
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Atomicity Violation Checker for Task Parallel Programs

Adarsh Yoga Santosh Nagarakatte
Rutgers University, USA

{adarsh.yoga,santosh.nagarakatte}@cs.rutgers.edu

Abstract
Task based programming models (e.g., Cilk, Intel TBB,
X10, Java Fork-Join tasks) simplify multicore program-
ming in contrast to programming with threads. In a task
based model, the programmer specifies parallel tasks and
the runtime maps these tasks to hardware threads. The run-
time automatically balances the load using work-stealing
and provides performance portability. However, interference
between parallel tasks can result in concurrency errors.

This paper proposes a dynamic analysis technique to de-
tect atomicity violations in task parallel programs, which
could occur in different schedules for a given input without
performing interleaving exploration. Our technique lever-
ages the series-parallel dynamic execution structure of a task
parallel program to identify parallel accesses. It also main-
tains access history metadata with each shared memory lo-
cation to identify parallel accesses that can cause atomic-
ity violations in different schedules. To streamline metadata
management, the access history metadata is split into global
metadata that is shared by all tasks and local metadata that
is specific to each task. The global metadata tracks a fixed
number of access histories for each shared memory loca-
tion that capture all possible access patterns necessary for an
atomicity violation. Our prototype tool for Intel Threading
Building Blocks (TBB) detects atomicity violations that can
potentially occur in different interleavings for a given input
with performance overheads similar to Velodrome atomicity
checker for thread based programs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging

Keywords Concurrency, Atomicity Checking, Intel TBB,
Fork Join Programs, Debugging

1. Introduction
Programming with tasks is an abstraction for developing
performance portable programs for multicore processors. In
a task based programming model, the programmer speci-
fies tasks and the runtime maps these tasks to underlying
hardware threads. Task based models facilitate performance
portable code (i.e., scalable performance with the increase in
the number of hardware cores) because the runtime balances
the load with work stealing. Some popular examples of lan-
guages and frameworks for writing task parallel programs
are Cilk [14], X10 [7], Java fork-join extensions [16], Intel
Threading Building Blocks [29], and Habanero Java [6].

Interference between two tasks executing in parallel can
cause errors such as data races and atomicity violations simi-
lar to thread-based programs. A data race exists between two
parallel tasks if two tasks can logically execute in parallel,
access the same location, and at least one of the accesses is a
write. Some of these data races can violate the programmer
intended atomicity specifications. The use of synchroniza-
tion in tasks (e.g., to avoid races) can also result in atomicity
violations even when the program is free of data races. In
this paper, we focus our attention on detecting atomicity vi-
olations in programs with and without data races.

A common specification of atomicity is conflict serializ-
ability [3, 12]. The execution trace of operations performed
by parallel tasks is conflict serializable if the trace can be
transformed into an equivalent serial trace by commuting ad-
jacent non-conflicting operations of parallel tasks. A serial
trace is obtained by concatenating the traces of the individ-
ual tasks [1]. In task-based programs, programmers expect
regions of code without any task management constructs to
be conflict serializable.

Our approach is motivated by prior research on data race
detectors for fork-join programs [9, 10, 22, 27, 28], which
detect data races for a given input without performing in-
terleaving exploration. They identify simultaneous read and
write operations executed by distinct tasks that can exe-
cute in parallel using the dynamic series-parallel execution
graph. These techniques detect all data races for a given in-
put in the absence of locks or critical sections. When tasks
use locks, these techniques detect races in a given trace.
Nondeterminator-2 [9] detects races for a given input in the
presence of locks for a class of programs with commutative

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CGO’16, March 12–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-3778-6/16/03...

http://dx.doi.org/10.1145/2854038.2854063

239

critical sections (Abelian programs). It maintains a history of
all dynamic accesses performed by parallel tasks and checks
this history on each access to determine if a race is feasible
in the current trace and in other schedules [9].

Inspired by these approaches for race detection, our goal
is to detect atomicity violations by designing appropriate
metadata and by leveraging the dynamic execution structure
of a task parallel execution. Given a program with atom-
icity annotations, we propose to maintain a history of dy-
namic memory accesses performed by various tasks with
each shared memory location. Our proposed technique de-
termines if memory accesses performed by potentially par-
allel tasks are conflict serializable using the access history.
The access history can be used to determine if there exists
two accesses by the same task and an interleaving access by
a parallel task that results in an atomicity violation. We also
observe that it is not necessary to maintain access history
for every dynamic memory access. We show that atomicity
violations, both in an execution trace and in other possible
schedules for a given input, can be detected by maintaining
a small number of access history entries that capture all pos-
sible ways in which an atomicity violation can occur.

To streamline the implementation of the metadata space,
we split the access history metadata with each shared mem-
ory location between a global metadata space and a lo-
cal metadata space. The global metadata space maintains
twelve access history entries for each shared memory lo-
cation. Among these twelve access history entries, eight of
them capture the four different kinds of two-access patterns
performed by tasks to a shared memory location (i.e., read-
read, read-write, write-write, and write-read operations per-
formed by the same task). The atomicity of these two-access
patterns can be violated by an interleaving parallel access by
a different task. To track such accesses, the other four access
history entries capture the two distinct read operations and
two distinct write operations performed by different tasks
that can execute in parallel. The local metadata space with
each task maintains the first read and first write to a location
by that task. When a task performs more than one memory
access to a memory location, the access history entries cor-
responding to these accesses — one from the local metadata
space entry and other for the current access — are updated
in the global metadata space if that access pattern has not
already been recorded in the global space (see Section 3.2).
Hence, the local metadata space acts as an interim buffer to
hold information about the first access by a task until it per-
forms the second access.

To detect atomicity violations with locks, the access his-
tory entry in the local metadata space also maintains infor-
mation about the set of locks held by a task before the mem-
ory access. We also provide a unique name to a lock when
it is released and re-acquired by the same task (see Sec-
tion 3.3). The access history corresponding to two accesses
performed by a task is updated in the global space only when

X = 10
Task T1

Spawn T2

Spawn T3

Y = Y+1

Task T2

Task T3

a = X

a = a+1

X = a
X = Y

Y = Y+1

S11

S2

S3

S12

1

2

3

4

5

6

7

89

10

Figure 1: A task parallel program with three tasks, T1, T2, and
T3. The regions of code without any synchronization constructs are
labeled S11, S12, S2, and S3.

the intersection of the set of locks held by the two accesses
is empty (i.e., the accesses occur in two different critical sec-
tions).

The proposed approach detects both single- and multiple-
variable atomicity violations. When multiple locations are
required to be accessed atomically, our approach provides
the same metadata to all those locations. The proposed tech-
nique is sound (i.e., it detects all atomicity violations in a
given trace) and is precise (i.e., it reports no false positives).
Our technique is complete, provided the execution trace ob-
served by the dynamic analysis contains all shared memory
operations that can possibly occur in other interleavings for
a given input.

We have built a prototype tool for detecting atomicity
violations for task parallel programs written with the In-
tel Threading Building Blocks (TBB) library. Our technique
successfully detects all errors in our test suite exercising var-
ious kinds of atomicity violations. The prototype’s perfor-
mance overheads are comparable to the Velodrome atomic-
ity checker for threaded programs [12], which detects atom-
icity violations in a given trace. In contrast to Velodrome,
our technique detects atomicity violations that could possi-
bly occur in different interleavings for a given input.

2. Dynamic Program Structure Tree
In this section, we describe prior research on using the ex-
ecution structure of a task parallel program to check if two
accesses can logically occur in parallel [28], which we use
in our approach. We say two accesses by different tasks can
logically execute in parallel if there exists a schedule where
these accesses are performed in parallel even though the ob-
served execution does not have a parallel access.

Consider the example task parallel program in Figure 1.
We illustrate task creation with the spawn statement. Task
T1 creates two tasks T2 and T3. Prior research on data race
detection for fork-join programs determined that the exe-

240

F11

S11 F12

A2 S12 A3

S2 S3

Figure 2: DPST for the sample task parallel program in Fig-
ure 1 after it has executed all the statements. There are four step
nodes (S11, S12, S2, S3) in total in the DPST. The step nodes S11
and S12 belong to task T1. The step nodes S2 and S3 belong to tasks
T2 and T3, respectively. The step node S2 is a child of async node
A2 because S2 is executed by task T2. Similarly, the step node S3

is a child of async node A3 because S3 is executed by task T3. The
step nodes S2 and S3 can occur in parallel because the LCA(S2,

S3) is F12 and the left child of F12 is an async node and it is an
ancestor of S2.

cution of a task parallel program results in a series paral-
lel graph [9, 10, 22], which can be used to find races in
other schedules not encountered in the current execution
trace. Unfortunately, the program has to be executed serially,
which results in performance overheads.

Raman et al. [28] proposed an approach to check whether
two accesses can logically execute in parallel without resort-
ing to a serial execution. Their key contribution is in rep-
resenting the execution as an ordered tree, which is called
the Dynamic Program Structure Tree (DPST), to capture the
series-parallel relationships among tasks. DPST can handle
both spawn-sync constructs in Cilk/Intel TBB and async-
finish constructs in Habanero Java [26, 28]. Two accesses
can execute in parallel if the least common ancestor of the
nodes corresponding to the two accesses have certain prop-
erties, which we describe below.

The DPST has three kinds of nodes. First, a maximal
sequence of instructions executed by a task without any
task management constructs is represented by a step node.
All computation and data accesses occur in the step nodes.
Hence, every data access has a corresponding step node as-
sociated with it. These step nodes are always leaves in a
DPST. Second, async nodes capture the spawning of a task
by a parent task. An async node executes asynchronously
with the remainder of the parent task. Third, a finish node
is created when a task spawns a child task and waits for the
child (and its descendents) to complete. A finish node is the
parent of all async, finish and step nodes directly executed by
its children or their descendants. All siblings of a node in a
DPST are ordered from left to right to reflect the left-to-right
sequencing of computations of their parent task.

The DPST is constructed such that all inner nodes are ei-
ther async or finish nodes and all leaf nodes are step nodes.
Although the nodes are added to the DPST during execution,

procedure BASICATOMICITYCHECKER(l, Si, A)
AH ←Metadata(l)
for all p ∈ AH do

if Node(p) == Si then
for all q ∈ AH \ p do

Sj = Node(q)
r = 〈Si, A〉
if Par(Si, Sj)&& !Serialize(r, p, q) then

Report Atomicity Violation
Metadata(l).append(〈Si, A〉)
return

Figure 3: Basic algorithm to check atomicity violations on mem-
ory access to location l by the step node Si with access type A.
Metadata(l) function returns the access history associated with
location l. Node(p) returns the step node of access history p.
Par(Si, Sj) returns true if the step nodes Si and Sj in the DPST
can execute in parallel. Serialize(r, p, q) returns false when r, p,
and q form an unserializable triple.

the path from a node to the root and left-to-right ordering of
the siblings do not change. The DPST’s construction ensures
that two distinct step nodes S1 and S2 (let’s assume S1 is
to the left of S2) are in parallel if the least common ances-
tor (LCA) of S1 and S2 has an immediate child A that is an
async node and is also an ancestor of S1.

Figure 2 presents the DPST after all tasks and instructions
in the program in Figure 1 have executed. The step nodes S2
and S12 can occur in parallel since the LCA(S2, S12) is
F12 and its left child is an async node. Similarly, S2 and
S3 can occur in parallel. However, step nodes S11 and S2

cannot occur in parallel since the LCA(S11, S2) is F11 and
its left child that is also an ancestor of S11 is S11, which is
not an async node. Similarly, step nodes S12 and S3 cannot
occur in parallel.

Next, we describe the detection of atomicity violations
with appropriate metadata leveraging the DPST.

3. Our Approach
We propose an approach to detect atomicity violations that
can occur in other schedules for a given input by maintain-
ing appropriate metadata and by leveraging the DPST. In a
task parallel program, some atomicity violations are neces-
sary (e.g., spin based synchronization operations). Hence,
the programmer provides annotations to specify the mem-
ory location (or a group of memory locations) that needs
to be accessed atomically by a task. Initially, we describe
the basic approach (Section 3.1) for detecting atomicity vi-
olations in task parallel programs that do not use synchro-
nization operations. In such scenarios, locations involved in
atomicity violations are also data races. However, all data
races are not atomicity violations. We optimize the basic ap-
proach by splitting the access history metadata into global
metadata and local metadata (Section 3.2) and by handling
synchronization operations (Section 3.3).

241

Access Pattern

A1:Read
A2:Read

A3:Read

Conflict
Serializable? Access Pattern Conflict

Serializable?

Serializable

Un-serializable

A1:Read
A2:Read

A3:Write
Serializable

Un-serializableA1:Read
A2:Write

A3:Write

A1:Read
A2:Write

A3:Read
A1:Write

A2:Read
A3:Read

A1:Write
A2:Read

A3:Write
Serializable Un-serializable

A1:Write
A2:Write

A3:Read

A1:Write
A2:Write

A3:Write
Un-serializable Un-serializable

Figure 4: Access patterns that are not conflict serializable. Ac-
cesses A1 and A3 are performed by the same step node in a task and
A2 is performed by a step node in a parallel task.

3.1 Basic Approach
To detect potential atomicity violations that can occur in dif-
ferent schedules for a given input without interleaving ex-
ploration, our approach needs to (1) identify tasks that can
logically execute in parallel, (2) identify multiple accesses
to the same location by a task, and (3) identify an interleav-
ing access from a task that can logically execute in paral-
lel (even though the current trace may not exhibit such an
access) and results in a trace that is not conflict serializable.
Figure 3 provides the basic algorithm for detecting atomic-
ity violations. We construct the dynamic program structure
tree (DPST) when the task parallel program executes as de-
scribed in Section 2. We perform a least common ancestor
query on the DPST to determine if two accesses can logi-
cally execute in parallel.

To detect atomicity violations that can possibly occur in
different schedules, our approach maintains access histo-
ries for each memory location. The access history associ-
ated with each location is a list of entries where each entry
contains the step node performing the access and the access
type. On a memory access to a location l by step node Si, we
check if there is a prior access performed by the same step
node along with another access by a logically parallel step
node Sj , which results in an atomicity violation.

Conflict serializability. Building on prior work [12],
we detect atomicity violations by checking whether the ac-
cess history violates conflict serializability. Given three ac-
cesses (A1, A2, and A3) in the access history, where A1 and
A3 are performed by the same step node and A2 is performed
by a step node executing in parallel, we check whether these
three accesses are conflict serializable. The three accesses
are conflict serializable if we can obtain a serial trace by
reordering non-conflicting operations [1]. Two accesses are
in conflict if and only if they access the same memory lo-
cation, they belong to two different step nodes in distinct
tasks, and at least one of them is a write. Figure 4 identifies
the access patterns involving three accesses that are conflict
serializable [19].

Execution
 Trace

Metadata for X

1 [(S11, W)]
2 [(S11, W)]
3 [(S11, W)]
4 [(S11, W)]
9 [(S11, W), (S3, W)]

10 [(S11, W), (S3, W)]
6 [(S11, W), (S3, W), (S2, R)]
7 [(S11, W), (S3, W), (S2, R)]
8 [(S11, W), (S3, W), (S2, R), (S2, W)]

Accesses by the same task

Three accesses that form an unserializable triple

Figure 5: Execution trace of the program in Figure 1. The access
history metadata for memory location X is shown after executing
each statement in the trace. Although the trace does not have an
atomicity violation, the access history metadata enables the detec-
tion of atomicity errors that can occur in a different schedule. The
step nodes S2 and S3 can execute in parallel.

Figure 3 presents the algorithm to check atomicity vio-
lations on access to location l. It identifies two other prior
accesses (p and q) that access the same location, where one
of them is executed by the same step node and the other is
executed by another parallel step node. It detects atomicity
violations by checking conflict serializability of the current
access with two prior accesses.

Figure 5 illustrates the basic approach for the task par-
allel program in Figure 1. The programmer specifies that
all accesses to memory location X in a step node should be
atomic. The trace observed during the execution is shown in
Figure 5, which does not have atomicity violations as all op-
erations of the step nodes S2 and S3 are executed together.
However, our access history metadata keeps track of all dy-
namic accesses and detects that there are two operations in
the step node S2 that access the same memory location, S3
also accesses the same location, and these three accesses
form an unserializable triple.

Restrictions. Our approach detects all atomicity viola-
tions for a given input (i.e., complete) provided the execu-
tion trace has all the shared memory operations (possibly in
different orders) executed by different interleavings. This re-
quirement can be violated when (1) a conditional branch or
the structure of the execution graph depends on a racy ac-
cess and (2) conditional branches are present within blocks
of code protected by synchronization.

3.2 Metadata Organization for Optimized Detection
The access history metadata in the basic approach described
earlier is proportional to the number of dynamic memory
accesses, which is checked on every memory access. Fur-
ther, different locations will have different amounts of meta-

242

procedure OPTATOMICITYCHECKER(l, Si, A)
t← Task(Si)
if GS(l) == ∅ and LSt(l) == ∅ then

HandleF irstAccess(l, Si, A)
return

if GS(l) 6= ∅ andLSt(l) == ∅ then
HandleF irstAccessCurrentTask(l, Si, A)
return

if GS(l) 6= ∅ andLSt(l) 6= ∅ then
HandleNonFirstAccess(l, Si, A)
return

Figure 6: High level structure of atomicity checking with fixed size
metadata. On each access to location l by task t, we check whether
it is the first access to the global metadata space (GS) or the local
metadata space LSt and take appropriate actions. The algorithms
for HandleFirstAccess, HandleFirstAccessCurrentTask,
and HandleNonFirstAccess are presented in Figure 7, Figure 8,
and Figure 9, respectively.

data, which necessitates dynamic allocation and complicated
management of the metadata space. We make the observa-
tion that it is not necessary to maintain access history infor-
mation for all dynamic memory accesses to a location. We
can detect atomicity violations when we capture enough in-
formation to reason about all unserializable triples shown in
Figure 4. An atomicity violation involves three accesses: two
accesses from a single task and one interleaving access from
a parallel task. Hence, we propose to maintain access history
metadata that remembers distinct two-access patterns (read-
read, read-write, write-read, and write-write operations by
a task) with every shared memory location. The atomicity
of the two-access pattern can be violated by an interleaving
parallel access. Hence, we propose to maintain single-access
patterns (i.e., read and write operations) along with the two-
access patterns as metadata.

3.2.1 Global and Local Metadata
To streamline the implementation of the access history meta-
data, we split it into global metadata and local metadata. The
global metadata for each memory location is shared by all
tasks. The global access history metadata contains twelve
access history entries for each shared memory location, cor-
responding to the four distinct two-access patterns (read-
read, read-write, write-read, and write-write operations per-
formed by the same task) along with access histories for the
two distinct read and two distinct write operations. Each
access history entry contains information about the step
node and the type of the access. We use the following nota-
tion to refer to single-access patterns in the global metadata
space for location l: GS(l).R1, GS(l).R2, GS(l).W1, and
GS(l).W2. We refer to the two-access patterns with the fol-
lowing notation: GS(l).RR (read-read), GS(l).RW (read-
write), GS(l).WW (write-write), and GS(l).WR (write-
read).

procedure HANDLEFIRSTACCESS(l, Si, A)
t← Task(Si)
if A == read then

GS(l).R1 = 〈Si, read〉
LSt(l).R = 〈Si, read〉

else
GS(l).W1 = 〈Si, write〉
LSt(l).W = 〈Si, write〉

return

Figure 7: This algorithm updates the global metadata (GS) and
local metadata (LS) on first access to location l by any task with
access type A, which is either a read or a write.

In addition to the global access history metadata, each
task also maintains per-task local metadata that maintains
information about its first read and write operation to a lo-
cation. When multiple parallel tasks have performed one ac-
cess to a location, we do not know if these tasks will perform
another access to the same location in the future that would
form a two-access pattern. The local metadata space acts as
an interim buffer to hold information about the first access
until we find the second access. We update the global meta-
data space when we find a two-access pattern if that access-
pattern has not already been encountered or the access his-
tory entry for the pattern in the global space is performed by
a task that executes in series with the current task. In sum-
mary, we maintain global metadata (GS) that stores twelve
access histories and per-task local metadata (LSt) that stores
two access histories with each location.

3.2.2 Metadata Propagation and Checking
In this section, we describe when the global and the local
metadata space is updated and checked. Figure 6 provides a
high level overview of our algorithm. It updates and checks
metadata depending on whether the access is: (1) the first
access to a location by any task, (2) the first access by the
current task but has been accessed by other tasks, or (3) is a
repeated access to a memory location that has been already
accessed by the current task. We will use Figure 10 as a
running example to illustrate metadata updates and checks.

First access. When a shared memory location is accessed
for the first time by any task and there is no entry either in the
local or the global space, the algorithm updates the single-
access pattern in the global metadata space and the first read-
/write information in the local metadata space as shown in
Figure 7. In Figure 10, statement 1 in step node S11 per-
forms the first access to location X. Hence, the single-access
pattern in the global metadata space (i.e., GS(X).W1) and
the first write entry in the local metadata space of task T1 is
updated as shown in Figure 10.

First local access with prior accesses by other tasks. In
the second case, the location l has been accessed by other
tasks but is the first access by the current task. Hence, the

243

1: procedure HANDLEFIRSTACCESSCURRENTTASK(l, Si, A)
2: t← Task(Si)
3: if A == read then
4: LSt(l).R = 〈Si, read〉
5: Check(GS(l).WW,LSt(l).R)
6: if GS(l).R1 == ∅ or !Par(GS(l).R1, Si) then
7: GS(l).R1 = 〈Si, read〉
8: else if GS(l).R2 == ∅ or !Par(GS(l).R2, Si) then
9: GS(l).R2 = 〈Si, read〉

10: else
11: LSt(l).W = 〈Si, write〉
12: Check(GS(l).WW,LSt(l).W)
13: Check(GS(l).RW,LSt(l).W)
14: Check(GS(l).RR,LSt(l).W)
15: Check(GS(l).WR,LSt(l).W)
16: if GS(l).W1 == ∅ or !Par(GS(l).W1, Si) then
17: GS(l).W1 = 〈Si, write〉
18: else if GS(l).W2 == ∅ or !Par(GS(l).W2, Si) then
19: GS(l).W2 = 〈Si, write〉
20: return

Figure 8: Metadata updates and checks on the first access by step
node Si to location l that has been accessed by other tasks. We
check if the current access can cause atomicity violations with two
access patterns in the global space. We update the global and the
local metadata space as shown above. The Check function takes
access histories corresponding to a two-access pattern and the cur-
rent access and checks if they form an unserializable triple. The Par
function checks if the two step nodes corresponding to the access
histories of its arguments can occur in parallel.

local metadata space does not have an entry for location l but
there is an access history entry in the global metadata space.
The only way the current access can result in an atomicity
violation is if it forms an unserializable triple with the two-
access patterns in the global metadata space.

If the current access is a read operation, then we check
whether the access histories corresponding to the write-write
access pattern in the global metadata space form an unserial-
izable triple with the current access (see line 5 in Figure 8).
We also check if the current access occurs in parallel with
the single-access reads in the global metadata space. If the
current access is in series with the single-access pattern (R1

or R2) in the global metadata space, then it is updated with
the current access (see lines 6-9 in Figure 8).

If the current access is a write operation, then we check
whether the access histories corresponding to the read-write,
write-write, write-read, and read-read two-access patterns in
the global space form an unserializable triple with the cur-
rent access (see lines 12-15 in Figure 8). We also update the
single-access patterns for writes (W1 and W2) with the cur-
rent access if it is in series with the current access (see lines
16-19 in Figure 8). Finally, we update the local metadata
space to reflect the current access.

In Figure 10, statement 9 in step node S3 performs the
first access by task T3 to location X, which has already been

1: procedure HANDLENONFIRSTACCESS(l, Si, A)
2: t← Task(Si)
3: if A == read then
4: if LSt(l).R 6= ∅ and !Par(GS(l).RR, Si) then
5: GS(l).RR = [LSt(l).R, 〈Si, read〉]
6: Check(GS(l).RR,GS(l).W1)
7: Check(GS(l).RR,GS(l).W2)

8: if LSt(l).W 6= ∅ and !Par(GS(l).WR, Si) then
9: GS(l).WR = [LSt(l).W, 〈Si, read〉]

10: Check(GS(l).WR,GS(l).W1)
11: Check(GS(l).WR,GS(l).W2)

12: if !Par(GS(l).R1, Si) or !Par(GS(l).R2, Si) then
13: GS(l).(R1 or R2) = 〈Si, read〉
14: else
15: if LSt(l).R 6= ∅ and !Par(GS(l).RW,Si) then
16: GS(l).RW = [LSt(l).R, 〈Si, write〉]
17: Check(GS(l).RW,GS(l).W1)
18: Check(GS(l).RW,GS(l).W2)

19: if LSt(l).W 6= ∅ and !Par(GS(l).WW,Si) then
20: GS(l).WW = [LSt(l).R, 〈Si, write〉]
21: Check(GS(l).WW,GS(l).W1)
22: Check(GS(l).WW,GS(l).W2)
23: Check(GS(l).WW,GS(l).R1)
24: Check(GS(l).WW,GS(l).R2)

25: if !Par(GS(l).W1 orW2, Si) then
26: GS(l).(W1 or W2) = 〈Si, write〉
27: return

Figure 9: Metadata propagation and checking on an access to lo-
cation l that has been previously accessed both by the current step
node Si and by other tasks. Since the current step node has per-
formed at least two accesses, the algorithm checks if their atomic-
ity can be violated by global access histories: R1, R2, W1, and W2

using the Check function. We use the notation GS(l).WW to re-
fer to access histories capturing the write-write pattern in the global
space for location l. The two access pattern is a list of two access
history entries. We use the notation [LSt(l).R, 〈Si, read〉] to refer
to the new two access pattern created using the access history in the
local space LSt(l).R and the access history corresponding to the
current access 〈Si, read〉.

accessed by task T1. The local metadata space of task T3 is
updated with the write by step node S3. The single-access
pattern in the global metadata space for location X (i.e.,
GS(X).W2) is updated with the current write.

Non-first access. In this case, the task performing the
current access has already performed another access to the
same location in the past. We use the information from the
local metadata space to determine if there is a need to up-
date the global metadata space. If the current operation is a
read and the current task has already performed a read, the
algorithm checks if the atomicity of the read-read two access
pattern seen by the current step node can be violated by the
single-access patterns in the global space (see lines 6-7 in
Figure 9). It also updates the global read-read pattern if the
entry in the global space occurs in series with the current ac-

244

WWRRW1 W2R1 WRRW

Execution
 Trace

Global Metadata for X

1
2
3
4
9

10
6
7
8

Two accesses by the same task

T1’s Local
Metadata for X

T2’s Local
Metadata for X

T3’s Local
Metadata for X

R2

(S11, W)

(S2, R) (S2, W)

(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S2, W)

(S3, W)
(S3, W)
(S3, W)
(S3, W)
(S3, W)

(S2, R)
(S2, R)
(S2, R)

(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)

R W

(S2, W)(S2, R)
(S2, R)
(S2, R)

R W

(S3, W)
(S3, W)
(S3, W)
(S3, W)
(S3, W)

R W

Three accesses that form an
unserializable triple

Figure 10: Atomicity checking with global and local metadata spaces for the task parallel program in Figure 1. We use the execution trace
from the illustration of the basic approach in Figure 5. The global metadata space has 12 access history entries. The local metadata space has
two access history entries corresponding to first read and write operations by the step node. There are 3 local metadata spaces corresponding
to the three active tasks. The metadata in the global and local spaces after executing each statement in the trace is shown.

cess (see line 5 in Figure 9). Similarly, if the current task has
already performed a write, the algorithm checks if the atom-
icity violation can occur between the write-read pattern seen
by the local task and the single-access write patterns in the
global space (see lines 10-12 in Figure 9). It also updates the
global metadata with the write-read pattern seen by the local
task if the global write-read pattern occurs in series with the
current access (see line 9 in Figure 9).

If the current access by the task is a write and it has al-
ready seen a read, then the algorithm checks if the atomicity
of the read-write pattern seen by the local task can be vio-
lated by single-access write pattern in the global space (see
lines 17-18 in Figure 9). If the local task has already per-
formed a write operation in the past, the algorithm checks
if the atomicity of the write-write pattern in the current step
node can be violated by global single-access patterns (see
lines 21-24 in Figure 9). It also updates the read-write/write-
write patterns in the global space if the entries in the global
space are in series with the step node of the current access.

In Figure 10, access to location X by statement 8 in step
node S2 is a non-first access because the step node S2 has
already performed a prior read to X. The atomicity of the
current access and the prior access to X by S2 is checked with
the single-access write patterns in the global space, which
enables the detection of the atomicity violation.

3.3 Handling Locks
Task parallel programs can also use synchronization opera-
tions (e.g., Intel TBB provides optimized implementations of
various locks). Beyond data races, atomicity violations can
occur in a task parallel program with locks if there are two
accesses to the same shared memory location that occur in
different critical sections and there is an interleaving access
from another task. Figure 11 presents a data-race free version
of the task parallel program from Figure 1, where accesses

X = 10

Task T1

Spawn T2

Spawn T3

Y = Y+1

Task T2

Task T3
a = X

a = a+1

X = a

X = Y

Y = Y+1

S11

S2

S3

S12

1

2

3

4

5

6

7

8

9

10

lock(L)

unlock(L)
11

lock(L)

unlock(L)

lock(L)

unlock(L)

13

14

15

16

12

Figure 11: A revised data-race free task parallel program from
Figure 1 with shared memory accesses to X in step nodes S2 and S3

protected by lock L.

to X have been protected by lock L. To detect atomicity vi-
olations in the presence of locks, we extend the algorithm
described in Figure 6 in two dimensions: (1) the access his-
tory in the local metadata space keeps track of locks held by
the step node at the time of the access and (2) the two-access
patterns in the global metadata space are updated with local
metadata entries when the two accesses performed by the
step node are not protected by the same lock and they satisfy
the conditions described in Figure 9. Note that the global
metadata space is unchanged, as the information about locks
is maintained only in the local metadata space.

Lock versioning. If a step node releases and re-acquires
the same lock between two accesses to the same shared
memory location, a parallel access by another task can cause

245

WWRRW1 W2R1 WRRW

Execution
 Trace

Global Metadata for X

1
2
3
4

9
10

6
7
8

Two accesses
by the same

task

T1’s Local
Metadata for X

T2’s Local
Metadata for X

T3’s Local
Metadata for X

R2
(S11, W)

(S2, R)(S2, W)

(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)

(S2, W)

(S3, W)
(S3, W)
(S3, W)
(S3, W)

(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)

R W

(S2, {L1}, W)

(S2, {L}, R)
(S2, {L}, R)
(S2, {L}, R)

R W

(S3, {L}, W)
(S3, {L}, W)
(S3, {L}, W)
(S3, {L}, W)

R W

Three accesses that form an
unserializable triple

13
14
15
16

11

(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)
(S11, {}, W)

(S3, {L}, W)
(S3, {L}, W)
(S3, {L}, W)
(S3, {L}, W)
(S3, {L}, W)

(S3, W)
(S3, W)
(S3, W)
(S3, W)
(S3, W)

(S2, {L}, R)
(S2, {L}, R)

(S11, W)
(S11, W)
(S11, W)
(S11, W)
(S11, W)

(S2, R)
(S2, R)
(S2, R)
(S2, R)
(S2, R)

Set of locks held
by the task in the
local metadata

space

Unique name to lock
L that is re-acquired

by the same task

Figure 12: Detection of atomicity errors in the presence of locks. We illustrate how the local and global metadata get updated as the
statements from the task parallel program in Figure 11 are executed. The local metadata space tracks the set of locks held by the task for
each access. The set of locks held by task T2 when the read to X by statement 7 is executed is {L}. When the same lock L is released and
reacquired by T2, we provide a unique name to the lock, L1. Hence, the set of locks held by T2 on the execution of statement 11 is {L1}. The
global metadata space does not contain information about the set of locks held by the access.

atomicity violations. To detect atomicity violations in such
scenarios, we provide a unique name for the lock every time
it is re-acquired within the same step node. If two accesses
to a location are in the same critical section, then they would
be protected by the same lock and would not experience an
atomicity violation. Two accesses are protected by the same
lock if the intersection of the set of locks held by them is
not empty. When two accesses are in different critical sec-
tions, the set of locks held would differ even when the crit-
ical sections acquire and release the same lock because the
re-acquired lock has a unique name.

In Figure 12, the set of locks held by each task before an
access is tracked in the local metadata space. The two-access
pattern is updated in the global space when the intersection
of the set of locks held before the two accesses is empty, as
shown in Figure 12 after the execution of statement 11.

4. Experiments
This section describes our prototype, implementation opti-
mizations, benchmarks, and experimental evaluation to mea-
sure the performance overhead.

Prototype. Our prototype is designed for C++ programs
that use Intel Threading Building Blocks (TBB) for task par-
allelism. It consists of an annotation processor that processes
programmer-provided annotations, an instrumenter that adds
calls to the checker, and the instrumentation library that
performs the metadata propagation and checking. We use
LLVM-3.7 with Clang as the foundation for processing an-
notations and adding instrumentation code. The programmer
uses type qualifiers to provide annotations [13]. The front-

end processes these qualifiers and generates LLVM IR with
the qualifier information encoded as LLVM metadata. We
use a compiler pass on the LLVM IR to insert calls to our
instrumentation library on memory accesses of interest, syn-
chronization accesses, and task management constructs. The
instrumentation functions are packaged as a library, which is
linked with the executable. We also changed the Intel TBB
library to add calls to our instrumentation functions on task
creation, task completion, synchronization, and to pass task
and thread identifiers. Our prototype is open source.1

Implementation optimizations. To reduce the perfor-
mance overhead, we optimize the layout of the DPST and
cache the least common ancestor queries. Instead of using a
linked data structure for the DPST, which has low data lo-
cality, our prototype overlays the DPST in a linear array of
nodes. Each node in the DPST maintains an index to the par-
ent, which avoids unnecessary pointer indirection, provides
better locality, and avoids the cost of frequent dynamic al-
locations. We cache the frequently accessed LCA queries to
reduce the overhead of repeated traversals in the DPST.

Benchmarks. We evaluate our prototype with thirteen
TBB applications, which include five TBB-based applica-
tions from Parsec [2], five geometry and graphics applica-
tions from the problem based benchmark suite (PBBS) [31],
and three applications from the Structured Parallel Program-
ming book [21]. The PBBS applications were originally im-
plemented using Cilk [14]. We translated these applications
to use Intel TBB for task parallelism. Table 1 lists the bench-

1 The latest version of our prototype can be found at https://github.
com/rutgers-apl/Atomicity-Violation-Detector.

246

https://github.com/rutgers-apl/Atomicity-Violation-Detector
https://github.com/rutgers-apl/Atomicity-Violation-Detector

Benchmark No. of
locations

No. of
nodes

No. of
LCAs

% of
unique
LCAs

blackscholes 10M 1,352 0 -NA-
bodytrack 5,101 915,537 11,567 56.32
streamcluster 4.58M 530,952 234,781 49.87
swaptions 26.76M 144M 9.87M 64.41
fluidanimate 19.73M 759,830 7.41M 61.35
convexhull 6.28M 91.17M 4.31M 62.11
delrefine 9.12M 4.87M 8.19M 65.76
deltriang 20M 4.14M 97,437 61.38
karatsuba 638,282 198,379 39,836 54.55
kmeans 40M 220,788 18.29M 83.86
nearestneigh 1.13M 18.69M 539,031 53.13
raycast 3.89M 6.28M 61.48M 91.13
sort 26,984 2,443 8,165 56.67

Table 1: The table lists the number of unique dynamic memory
locations accessed, the number of nodes in the DPST, the number
of least common ancestor queries, and the percentage of unique
LCA queries for each benchmark. We use M for million in the
table. The blackscholes application uses parallel_for and does
not perform multiple accesses to the same location in any step node.
Our approach does not perform an LCA query on the first access
to a location by a step node (see Figure 7) and hence, blackscholes
has zero LCA queries.

marks used and the characteristics of the benchmarks.
The experiments were performed on a 2.1GHz 16-core

Intel x86-64 Xeon server with 64 GB of memory running
64-bit Ubuntu 14.04.3. Each benchmark was executed five
times and the overhead reported is calculated by taking the
average of the five executions. We use geometric mean to
report the average slowdown in our evaluation.

Detection of atomicity violations. We have built a test
suite of 36 programs that exercise various kinds of atom-
icity violations. Our prototype detected all these violations
without false positives. We have also developed a trace gen-
erator that takes the number of tasks and memory accesses
as parameter and generates execution traces. Our prototype
successfully detects all atomicity violations for a given input
by examining one execution trace.

Experimental evaluation. We evaluate the proposed
technique to measure the performance overhead and study
the impact of optimizations. We also compare our proto-
type with Velodrome [12], which is an atomicity checker
for threaded programs and detects atomicity violations that
occur in a given schedule. We reimplemented it to check the
atomicity of accesses performed by a step node.

Performance overhead in comparison to Velodrome.
Figure 13 reports the runtime performance overhead of
atomicity checking compared to a baseline without any
checking. There are two bars for each benchmark. The left
bar and the right bar report the performance overhead for

0X

5X

10X

S
lo

w
d
o
w

n

our prototype

velodrome

blackscholes

bodytrack

stre
amcluste

r

sw
aptions

flu
idanimate

convexhull

delrefin
e

deltri
ang

karatsu
ba
kmeans

nearestn
eigh

raycast sort

Geo.mean

1
1
X

Figure 13: Execution time slowdown of our prototype atomic-
ity violation detector and Velodrome when compared to a base-
line without any instrumentation. As each bar represents slowdown,
smaller bars are better.

0X

5X

10X

S
lo

w
d
o
w

n

array-DPST

linked-DPST

blackscholes

bodytrack

stre
amcluste

r

sw
aptions

flu
idanimate

convexhull

delrefin
e

deltri
ang

karatsu
ba
kmeans

nearestn
eigh

raycast sort

Geo.mean

1
1
X

1
3
X

1
2
X

Figure 14: Execution time slowdown of atomicity checking with
our prototype using an array-based DPST and a linked data struc-
ture based DPST.

our prototype and Velodrome respectively. The performance
overhead for atomicity checking with our technique is 4.2×.
Three applications, kmeans, raycast, and swaptions have
relatively high overhead compared to other benchmarks.
Among them, kmeans and raycast perform a large num-
ber of LCA queries and a large fraction of them are unique
and do not benefit from LCA caching (see Table 1). Al-
though swaptions performs relatively few LCA queries, it
has higher overhead than other applications because it has
the highest number of nodes in the DPST and accesses a
large number of memory locations.

The performance overhead of atomicity checking for a
given schedule with Velodrome is 4.6× on average. As Velo-
drome detects atomicity violation in a given schedule, it has
to be combined with an interleaving explorer to detect atom-
icity violations possible in other schedules. Our approach
detects atomicity violation with similar or lower overhead
than Velodrome while providing detecting atomicity viola-
tions that can occur in other schedules for a given input.

Array-based DPST vs linked DPST. Figure 14 reports
the performance overhead of our prototype with DPST im-
plemented as a linear array of nodes and DPST imple-

247

mented with linked data structures. On average, the array-
based DPST reduces the performance overhead of atomicity
checking from 5.1× with linked DPST to 4.2×. Applica-
tions that have a large number of LCA queries benefit from
array-based DPST.

5. Related Work
Atomicity checkers for threaded programs. There is huge
body of work on detecting atomicity violations in threaded
programs [3, 12, 18–20, 25], which detect violations in a
trace. Many of these techniques use conflict serializabil-
ity [3, 12]. They expose atomicity violations by perturb-
ing executions [25], actively looking for races [11], infer-
ring atomicity specifications [18] and identifying correla-
tion between multiple variables [18]. To detect atomicity
violations in other schedules for a given input, these tech-
niques should be used in tandem with interleaving explo-
ration strategies [5, 23, 24].

Static analysis and predictive testing. Several static
analysis techniques detect atomicity violations through vari-
ants of type inference [30]. The false positives from static
analysis have also been filtered by complementing static
analysis with dynamic analysis [8]. Predictive approaches
attempt to detect possible concurrency errors in different
schedules based on permutation of operations in the ob-
served trace [15, 32, 33]. They typically encode the checked
property as a symbolic formula and use SMT solvers to
check them. In contrast, we detect errors by leveraging the
execution graph and by maintaining appropriate metadata.

Data race detection in task parallel programs. The ap-
proach proposed by Mellor-Crummey et al. [22] and Non-
determinator [10] were seminal in proposing the detection
of data races for a given input in task parallel programs us-
ing the series-parallel execution graph. Subsequently, these
techniques have been enhanced to handle locks [9], to han-
dle task graphs in Habanero-Java [27], and to detect races
without serial execution with SPD3 [26, 28]. Our proposed
research uses the DPST representation in SPD3 and is in-
spired by the access histories in the All-Sets algorithm for
Cilk [9]. We extend these techniques to detect atomicity vio-
lations. Further, our metadata is not proportional to the num-
ber of dynamic accesses to a location.

There are proposals to enforce determinism in task par-
allel programs by detecting data races [17]. In the ab-
sence of synchronization, data race freedom ensures de-
terminism [4, 17] which also eliminates atomicity errors.
Tardis [17] checks for determinism by maintaining a log of
accesses and identifying conflicting accesses between tasks.
In contrast, our approach handles atomicity violations in the
presence of synchronization operations.

6. Conclusion
This paper proposes a dynamic analysis to detect atomic-
ity violations in task parallel programs. It detects errors in

the observed trace and also in different possible schedules
for a given input. The key idea is to track access histories
with each location and check conflict serializability of the
accesses that may happen in parallel. We accomplish this by
leveraging the structure of the execution, capturing a small
number of access histories necessary to detect atomicity vio-
lations, and splitting the access history metadata into global
and local metadata. Our approach detects atomicity errors
that can occur in different schedules, provided the trace seen
by our analysis contains all shared memory operations exe-
cuted in other schedules in some order. Static analysis can
likely be used to create an over-approximation of such a set
of accesses, which we plan to explore in the future.

Acknowledgments
We thank David Menendez, Jay Lim, Aarti Gupta, John
Mellor-Crummey, and the CGO reviewers for their feed-
back. We also thank Adrian Sampson for developing Quala.
This research is supported in part by NSF CAREER Award
CCF–1453086, a sub-contract of NSF Award CNS–1116682,
and a NSF Award CNS–1441724.

References
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations. In Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, pages
72–81, 2008.

[3] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. Dou-
bleChecker: Efficient Sound and Precise Atomicity Checking.
In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
28–39, 2014.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System for
Deterministic Parallel Java. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 97–116, 2009.

[5] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the 15th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 167–178, 2010.

[6] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java:
The New Adventures of Old X10. In Proceedings of the 9th
International Conference on Principles and Practice of Pro-
gramming in Java, pages 51–61, 2011.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-
oriented Approach to Non-uniform Cluster Computing. In
Proceedings of the 20th Annual ACM SIGPLAN Conference

248

on Object-oriented Programming, Systems, Languages, and
Applications, pages 519–538, 2005.

[8] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE: Detect-
ing Atomicity Violations via Integrated Dynamic and Static
Analysis. In Proceedings of the 12th International Confer-
ence on Fundamental Approaches to Software Engineering,
pages 425–439, 2009.

[9] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting Data Races in Cilk Programs That
Use Locks. In Proceedings of the 10th ACM Symposium on
Parallel Algorithms and Architectures, pages 298–309, 1998.

[10] M. Feng and C. E. Leiserson. Efficient Detection of Determi-
nacy Races in Cilk Programs. In Proceedings of the 9th ACM
Symposium on Parallel Algorithms and Architectures, pages
1–11, 1997.

[11] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atom-
icity Checker for Multithreaded Programs. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 256–267, 2004.

[12] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound
and Complete Dynamic Atomicity Checker for Multithreaded
Programs. In Proceedings of the 29th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 293–303, 2008.

[13] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive Type
Qualifiers. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementa-
tion, pages 1–12, 2002.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The Imple-
mentation of the Cilk-5 Multithreaded Language. In Proceed-
ings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, pages 212–223, 1998.

[15] J. Huang, P. O. Meredith, and G. Rosu. Maximal Sound Pre-
dictive Race Detection with Control Flow Abstraction. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 337–348,
2014.

[16] D. Lea. A Java Fork/Join Framework. In Proceedings of the
ACM 2000 Conference on Java Grande, pages 36–43, 2000.

[17] L. Lu, W. Ji, and M. L. Scott. Dynamic Enforcement of De-
terminism in a Parallel Scripting Language. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 519–529, 2014.

[18] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. MUVI: Automatically Inferring Multi-variable Ac-
cess Correlations and Detecting Related Semantic and Con-
currency Bugs. In Proceedings of 21st ACM SIGOPS Sympo-
sium on Operating Systems Principles, pages 103–116, 2007.

[19] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In
Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 37–48, 2006.

[20] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: De-
tecting and Surviving Atomicity Violations. In Proceedings

of the 35th Annual International Symposium on Computer Ar-
chitecture, pages 277–288, 2008.

[21] M. McCool, A. Robison, and J. Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Morgan
Kaufmann, 2012.

[22] J. Mellor-Crummey. On-the-fly Detection of Data Races for
Programs with Nested Fork-join Parallelism. In Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing, pages
24–33, 1991.

[23] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and Reproducing Heisenbugs in Con-
current Programs. In Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, pages
267–280, 2008.

[24] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musu-
vathi. Multicore Acceleration of Priority-based Schedulers for
Concurrency Bug Detection. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 543–554, 2012.

[25] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of
the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
25–36, 2009.

[26] R. Raman. Dynamic Data Race Detection for Structured Par-
allelism. PhD thesis, Rice University, 2012.

[27] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Ef-
ficient Data Race Detection for Async-finish Parallelism. In
Proceedings of the 1st International Conference on Runtime
Verification, pages 368–383, 2010.

[28] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scal-
able and Precise Dynamic Datarace Detection for Structured
Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 531–542, 2012.

[29] J. Reinders. Intel Threading Building Blocks. O’Reilly &
Associates, Inc., 2007.

[30] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Auto-
mated Type-based Analysis of Data Races and Atomicity. In
Proceedings of the 10th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 83–94,
2005.

[31] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Ky-
rola, H. V. Simhadri, and K. Tangwongsan. Brief Announce-
ment: The Problem Based Benchmark Suite. In Proceedings
of the 24th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 68–70, 2012.

[32] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flana-
gan. Sound Predictive Race Detection in Polynomial Time.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
387–400, 2012.

[33] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic Pre-
dictive Analysis for Concurrent Programs. In Proceedings of
Formal Methods, pages 256–272, 2009.

249

	Introduction
	Dynamic Program Structure Tree
	Our Approach
	Basic Approach
	Metadata Organization for Optimized Detection
	Global and Local Metadata
	Metadata Propagation and Checking

	Handling Locks

	Experiments
	Related Work
	Conclusion

