
A Parallelism Profiler with What-If Analyses for
OpenMP Programs

Nader Boushehrinejadmoradi
Department of Computer Science

Rutgers University
Piscataway, USA

naderb@cs.rutgers.edu

Adarsh Yoga
Department of Computer Science

Rutgers University
Piscataway, USA

adarsh.yoga@cs.rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
Piscataway, USA

santosh.nagarakatte@cs.rutgers.edu

Abstract—This paper proposes OMP-WHIP, a profiler that
measures inherent parallelism in the program for a given input
and provides what-if analyses to estimate improvements in
parallelism. We propose a novel OpenMP series-parallel graph
representation (OSPG) that precisely captures series-parallel
relations induced by various directives between different frag-
ments of dynamic execution. OMP-WHIP constructs the OSPG
and measures the computation performed by each dynamic
fragment using hardware performance counters. This series-
parallel representation along with measurement of computation
is a performance model of the program for a given input, which
enables computation of inherent parallelism. This novel perfor-
mance model also enables what-if analyses where a programmer
can estimate improvements in parallelism when bottlenecks are
addressed. We have used OMP-WHIP to identify parallelism
bottlenecks in more than forty applications and then designed
strategies to improve the speedup in seven applications.

Index Terms—Parallel programming, Performance analysis

I. INTRODUCTION

OpenMP [1], [2] is an application programming interface
to incrementally add parallelism to an application. OpenMP
consists of a set of compiler directives and a runtime that orches-
trates parallel execution. A programmer specifies code regions
that can be executed in parallel using directives. The compiler
translates these directives into outlined functions, which are
executed by the runtime in parallel. The OpenMP specification
includes both work-sharing and tasking directives [1], [2].

Although the incremental addition of parallelism with
OpenMP enables easier adoption, the program can have
serialization bottlenecks. A program that provides reasonable
speedup with a small number of cores may not have scalable
speedup with a large number of cores. To address this problem,
a large number of OpenMP performance tools have been
proposed [3]–[14]. Some techniques have been integrated into
commercial tools (e.g., Intel Vtune [5], Oracle’s Developer
studio [15]). These tools primarily indicate where the program
spends its time [3] or contends for a resource [16]. Addressing
regions where the program spends significant time may not
improve the speedup because the bottleneck may shift to some
other code region. Further, these tools provide a thread-based
view of the program execution, which is dependent on the
number of threads and their scheduling. It may not reveal
serialization bottlenecks when the program is executed on a
machine with a large number of cores.

This paper makes a case for measuring inherent parallelism in
the OpenMP program for a given input to identify serialization
bottlenecks and to estimate improvements when such bottle-
necks are removed. Parallelism represents the speedup that the
program will exhibit when it is executed on an infinite number
of processors (assuming no scheduling overheads and secondary
effects). Inherent parallelism is an upper bound on the speedup
for the given input on any machine and is constrained by the
longest serial computation in the program (i.e., Amdahl’s law).

This paper proposes OMP-WHIP, a profiler for OpenMP
programs that measures the inherent parallelism in the en-
tire program and for each OpenMP directive. The inherent
parallelism reported by OMP-WHIP is not dependent on the
number of threads and the specific scheduling of threads during
execution. OMP-WHIP’s what-if analyses enable the user
to estimate the increase in parallelism even before concrete
strategies to address serial bottlenecks have been designed.
OMP-WHIP handles both work-sharing and tasking constructs.
To compute parallelism, OMP-WHIP has to measure work
performed by various fragments of dynamic execution without
directives and identify those fragments that execute in series.

We propose OpenMP Series Parallel Graph (OSPG), a
novel directed acyclic graph representation that precisely
captures series-parallel relations between fragments of dynamic
execution without OpenMP directives. Each leaf in the OSPG
represents a fragment of execution without OpenMP directives.
Intermediate nodes in the OSPG capture series-parallel relations
induced by the OpenMP directives. The series-parallel relation-
ship between existing nodes in the OSPG does not change when
new nodes are added. OSPG is inspired by previous series-
parallel graphs for task parallel programs [17]–[20]. In contrast
to them, OSPG accurately models the semantics of OpenMP’s
directives and it can be constructed in parallel. Section III-B
presents our novel algorithm to construct the OSPG during
program execution. We can determine whether two leaf nodes
execute in parallel by looking at the least common ancestor
of the two nodes in the OSPG (see Section III). OMP-WHIP
uses the OSPG to compute inherent parallelism and perform
what-if analyses.

OMP-WHIP constructs this OSPG representation by in-
tercepting the program during the execution of the OpenMP
directive using OMPT callbacks [21]. Apart from constructing
the OSPG, it also measures the total computation performed by

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

https://www.acm.org/publications/policies/artifact-review-badging#available

each dynamic execution fragment without OpenMP directives,
using hardware performance counters. The OSPG along with
this fine-grained measurement of computation in its leaves is an
accurate performance model of the program for a given input,
which can be used to compute the parallelism in the program
and perform what-if analyses. OMP-WHIP maintains a small
slice of the OSPG in memory at any point in time during
profile execution. The profile reported to the user contains the
inherent parallelism and the serial work exclusively performed
by each OpenMP directive (see Section IV).

OpenMP directives with low parallelism are potential candi-
dates to improve performance. However, optimizing one such
region may not increase the parallelism when the program has
multiple parallel paths that perform similar amounts of work.
OMP-WHIP’s what-if analyses estimate improvements in
parallelism when certain regions of the code are hypothetically
optimized. Programmers will annotate static program regions
that they want to optimize. OMP-WHIP executes the program,
identifies the dynamic regions that correspond to the annotated
regions, and reconstructs the performance model by executing
the program. OMP-WHIP’s what-if analyses recompute the
parallelism by reducing the serial work for the annotated regions
by a user-defined threshold while keeping the total work exactly
as measured. Reducing serial work while keeping the total work
unchanged mimics the effect of parallelizing a region of code.

The OMP-WHIP prototype supports the common core
of the OpenMP specification, tasking directives, and task
dependencies. We have used OMP-WHIP with a set of 43
applications from Sequoia, Coral, BOTS, PBBS, NAS and
Kastors benchmark suites. We were able to use OMP-WHIP’s
what-if analyses to identify bottlenecks in all of them. We
improved the speedup of 7 applications by addressing the
identified bottlenecks. For instance, OMP-WHIP’s what-if
analyses helped us identify two serial regions in AMGmk that
would increase parallelism. Subsequently, parallelizing them
improved the speedup of AMGmk from 5.39× to 9.13× on a
16-core machine. OMP-WHIP is open source [22].

II. OVERVIEW OF PROFILING AND WHAT-IF ANALYSES

We provide a brief overview of profiling an application
with OMP-WHIP, the OSPG representation, what-if analyses,
and the profiles reported to the user. We illustrate our ideas
with an OpenMP program in Figure 1(a) that identifies all
prime numbers up to a given bound (N). The program uses
the parallel directive to create a parallel region (line 3
in Figure 1(a)). The runtime creates a team of threads that
execute the code in the region in parallel. The omp for loop
within the parallel region executes the iterations of the loop
in parallel. The programmer has balanced the work in the
loop using dynamic scheduling because checking the primality
of a small number is much faster than a large number. With
dynamic scheduling, the runtime divides the iteration space
into chunks of size 100 in Figure 1(a).

When the program in Figure 1(a) is executed on a machine
with two cores and for an input where N is 600, the speedup
of the parallel execution compared to the serial execution is

1.37×. This speedup can vary across executions depending on
the scheduling of threads on the same machine. Moreover, the
speedup on a 2-thread execution provides little information
about the speedup on a large number of processors.

The OMP-WHIP parallelism profiler. OMP-WHIP is
a profiler that measures inherent parallelism in a program
for a given input and also enables what-if analyses. To
measure inherent parallelism and perform what-if analyses,
OMP-WHIP has to identify the series-parallel relationship
between program execution fragments that is not dependent
on the number of threads. OMP-WHIP lifts the level of
abstraction from a thread-based view of the execution to an
inherent parallelism view using a novel OpenMP series-parallel
graph (OSPG) representation. OMP-WHIP constructs this
OSPG representation during program execution and measures
computation in any fragment without OpenMP directives.

OpenMP Series Parallel Graph (OSPG). OSPG is a
directed acyclic graph that precisely encodes the series-parallel
relationship between various fragments of dynamic execution.
Section III provides formal definitions, properties, and con-
struction of the OSPG. The dynamic execution of a program
can be divided into fragments without any OpenMP directives.
Each such fragment executes serially and is called a work-
node (W-node). These are leaves in the OSPG. To maintain
the series-parallel relationship between these W-nodes, OSPG
contains other intermediate nodes — a parallel node (P-node)
and a sync node (S-node). The descendants of two sibling
P-nodes logically execute in parallel. An S-node encodes
the fact that a block of code executes in series with another
block of code. Given any two work nodes W1 and W2 where
W1 is to the left of W2 in the OSPG, we can determine if
they logically execute in parallel by finding the least common
ancestor (LCA) of W1 and W2 in the OSPG and checking if the
child of the LCA on the path to W1 is a P-node. Otherwise,
they execute in series.

Figure 1(b) provides the OSPG for the execution of the
program in Figure 1(a) on a machine with two cores (2 threads
in the team). All useful work (ignoring OpenMP directives)
happens in the W-nodes (i.e., W0-W8). In Figure 1(b), S1 and
S2 are S-nodes added to represent the series-parallel rela-
tions induced by omp parallel and omp for directives,
respectively. P0 and P1 are P-nodes added to model parallel
execution by the threads in the team. The chunks of the loop
executed by different threads in the team are represented by
P2, P3, P4, P5, P6, and P7. Although different chunks
may execute on the same core in a given execution, all these
chunks logically execute in parallel from the perspective of
measuring inherent parallelism. Two work nodes W1 and W2
in Figure 1(b) logically execute in parallel because their least
common ancestor is S3, whose left child on the path to W1 is
a P-node (i.e., P2). Using the OSPG, we can identify if any
two W-nodes execute in series or not.

Parallelism Profile. OMP-WHIP’s parallelism profile re-
ports the parallelism and the percentage of serial work on
the critical path for each directive in the program. Section IV
provides a detailed description of our algorithm to compute

80

160

S0

W0
S1

S2

P0 P1

S3 S4

W1

W8

P2 P5

W4

P3
P4

W2 W3

P6

W5

P7

W6

W7

10

T0 T0 T0 T1 T1 T1

30 65 20 45

10

T0

L10-L11

L16-L18

L6-L9 L6-L9 L6-L9 L6-L9 L6-L9 L6-L9

Line
number ParallelismWork

L14

L5
L3

1.72

2.06
2.05

430

330
350

Serial
work
250

160
170

Serial work
percent

32

64
4

T0 T1

Line
number ParallelismWork

L14

L5
L3

3.31

8.25
7

430

330
350

Serial
work
130

40
50

Serial work
percent
61.54

30.77
7.69

Line
number ParallelismWork

L14

L5
L3

6.14

8.25
7

430

330
350

Serial
work
70

40
50

Serial work
percent
28.57

57.14
14.29

(b) OSPG (c) Parallelism profile

(d) What-if profile for region L6-L9

(e) What-if profile for regions
L16-L17 and L6-L9

L10-L11

10

1 void compute_primes (bool* primes, int N)
2 {
3 #pragma omp parallel num_threads(2)
4 {
5 #pragma omp for schedule(dynamic,100)
6 for (int i = 2; i < N; i++)
7 {
8 primes[i] = isPrime(i);
9 }
10 report_primes(primes);
11 }
12 }
13
14 int main (int argc, char** argv)
15 {
16 int N = 600;
17 bool* primes = create_array(N);
18 compute_primes(primes,N);
19 return 0;
20 }

(a) An example OpenMP program

Fig. 1. (a) A simple C++ program to compute prime numbers for a given bound N . It creates an array of Boolean values (primes) to record if the number
is prime. The parallel for loop iterates over the range and checks the number is prime. (b) The performance model for an execution with two threads. It
consists of the OpenMP series parallel graph along with work measurement for the leaf nodes (numbers in boxes). We also show the static regions of code
corresponding to each leaf node (e.g., L6-L9 for node W1). (c) The inherent parallelism profile reported to the user. (d) What-if profile estimating parallelism
improvements when region L6-L9 is hypothetically optimized by 4×. (e)What-if profile when regions L6-L9 and L16-L17 are optimized by 4×.

the profile. Figure 1(c) reports the parallelism profile for
the OpenMP program in Figure 1(a). It reports that the
parallelism for the entire program (line 14 corresponding to
the main function) is 1.72, which is the maximum speedup
that the program is going to attain irrespective of the number
of processors. Similarly the parallelism for the parallel
directive (line 3 in Figure 1(c)) is 2.05 and the parallelism for
the omp for directive is 2.06. To improve parallelism, the
programmer has to reduce serial work on the critical path in
the program. The omp for directive, which performs 64% of
the serial work on the critical path, is a good place to start.

What-If Analyses. OMP-WHIP’s performance model al-
lows programmers to estimate increases in parallelism when
certain regions of the program are parallelized, which we call
what-if analyses. To use them, programmers will demarcate
the regions of code that they plan to parallelize with annota-
tions (i.e., __WHATIF_BEGIN__ and __WHATIF_END__)
and specify the expected parallelism for the region. OMP-
WHIP performs what-if analyses over the performance model
and generates a what-if profile (see Section IV-C for details).
Figure 1(d) reports the what-if profile when the code region
L6-L9 (i.e., lines 6-9 in Figure 1(a)) is optimized by 4×. It
shows that the parallelism for omp for increases much more
than the parallelism of the program. Figure 1(e) reports the
profile when both regions L6-L9 and L16-L17 are optimized by
4× using what-if analyses. From the profile in Figure 1(e), one
can infer that the programmer has to parallelize both regions
to increase parallelism in the program. Now, the programmer
can focus on concrete strategies to parallelize them.

III. OPENMP SERIES PARALLEL GRAPH

OpenMP series parallel graph (OSPG) is inspired by prior
series-parallel representations for task parallel programs [17]–
[20], [23]. However, the OSPG is designed with two goals: (1)
it accurately models the semantics of OpenMP directives to

enable the measurement of inherent parallelism and (2) it can
be constructed in parallel during program execution.

A. OSPG and its Properties

OSPG is a directed acyclic graph (DAG) representation of
an execution for a given input. Formally, OSPG G = (V,E)
is a DAG, where V is the set of nodes and E is the set of
directed edges. OSPG consists of three types of nodes: work
nodes (W-node), parallel nodes (P-node), and sync nodes
(S-node). Hence, V = Vw ∪ Vp ∪ Vs where Vw represents
the set of W-nodes, Vp represents the set of P-nodes, and
Vs represents the set of S-nodes in G. The edges (E) in
OSPG (G) consists of two sets of directed edges: the set
of parent-child edges (Epc) and the set of task dependency
edges (Edep), which models the programmer specified task
dependencies between sibling OpenMP tasks. Hence, E =
Epc ∪ Edep.

Work nodes (W-nodes). A W-node represents the longest
sequence of instructions without any OpenMP directive. In a
program without any OpenMP directives (i.e., a serial program),
the entire execution will be one single W-node. In a parallel
execution, a W-node captures the execution fragment between
two successive OpenMP directives. All computation in the
program’s execution is performed by the W-nodes. Hence,
the entire execution can be viewed as a collection of W-nodes,
some of which may execute in parallel.

Parallel node (P-node). A P-node represents execution
fragments that can logically execute in parallel. The dynamic
execution fragments represented by the subtree under the
P-node may execute in parallel with the execution fragments
represented by the siblings to the right of the P-node or their
descendants. For example, when the program creates a new
task, a P-node will be added to the OSPG to capture the fact
that the newly created task will execute in parallel with the
continuation. Any computation that occurs within the newly
created task will be in the subtree under the P-node.

S0

W0 S1

S2

P0 P1

W1 W2

S0

W0

S0

S1

P0 P1

W0 W1

S0

S1

P0 P1

W0 W1

S2

P2 P3

W2 W3

S0

S1

P0 P1

W0 W1

S0

S1

P0 P1

W0 W1P2 P3 P4 P5

W2 W3 W4 W5

(a) #pragma omp parallel (b) #pragma omp barrier (c) #pragma omp for

S0

S1

P0 P1

W0 W1

(d) #pragma omp master

S0

S1

P0 P1

W0 W1W2

AfterBefore AfterBefore AfterBefore AfterBefore

Fig. 2. The OSPG construction for the commonly used directives. The nodes in the OSPG before a directive are greyed out in the OSPG after the directive.

Sync nodes (S-nodes). An S-node represents the serial
execution of a region of code in relation to the code after the
region. All computation and OpenMP directives within the
region will be descendants of the S-node. For example, the
execution of the code block succeeding a omp parallel
directive will be represented by an S-node because the code
within the omp parallel block executes in series with the
code after the omp parallel block.

Properties. We highlight the main properties of the OSPG
that will be useful in computing the parallelism profile:

• The OSPG without the task dependency edges is a tree.
Given an OSPG G = (V,E), G′ = (V,E′) is a tree where
E′ = E \ Edep.

• The left to right ordering of sibling nodes represents the
logical sequencing of operations in the program. A node U
is to the left of node V if U occurs before V in the depth-
first traversal of the OSPG without the task dependency
edges (Edep).

• The descendants of a P-node logically execute in parallel
with its siblings (and their descendants) to the right of
the P-node. Similarly, the descendants of an S-node
execute in series with its siblings (and their descendants)
to the right of the S-node.

• Two W-nodes U and V , where U is to the left of
V , logically execute in parallel if the child of the least
common ancestor (LCA) of U and V that occurs on the
path from the LCA to U , is a P-node. Similarly, two
W-nodes U and V , where U is to the left of V , execute
in series if the child of the LCA of U and V that occurs
on the path from the LCA to U , is an S-node.

B. OSPG Construction during Program Execution

The semantics of the OpenMP directive determines the
specific nodes added to the OSPG during execution. When the
program encounters a directive during execution, we may not
know whether the directive ends with a barrier or not. We have
to add S-nodes and P-nodes appropriately to maintain the
series-parallel relationship and the properties of the OSPG.
Further, our goal is to measure inherent parallelism even when
the program uses work-sharing directives. Hence, we need to
capture fragments that can logically execute in parallel even
though some chunks of execution are serialized in a given
thread (e.g., with omp for).

Per-thread OSPG stack. The construction of the OSPG
happens in parallel as threads execute various OpenMP
directives. A thread needs to know where it should add new
nodes in the OSPG. Hence, each thread maintains a stack of
intermediate nodes that provides information about the slice
of the OSPG being executed by it. A stack is needed because
multiple nodes can execute in the context of the thread. For
example, lets consider the case when a thread executing an
OpenMP task waits for its children to complete (e.g., using
taskwait). When there are children still waiting to execute, this
thread can execute a child task. Eventually, the thread resumes
the execution of the original task. Hence, this per-thread stack
provides information about where to add nodes in the OSPG.

Program start. When a program begins its execution, the
thread executing it creates an S-node as the root of the OSPG
and pushes it to its per-thread stack. It also adds a W-node as
the child of the root S-node, which captures the computation
performed before encountering an OpenMP directive.

The omp parallel directive. This is a work sharing
directive. A thread reaching this directive creates a team of
one or more threads including itself that execute the following
block of code in parallel. The threads in the team synchronize
at the end of the parallel region. The thread encountering the
directive creates an S-node and adds it to the OSPG. It adds an
S-node because the code within the parallel region executes
in series with the code after the parallel region. Figure 2(a)
shows the changes to the OSPG on encountering a parallel
directive, where S1 is the S-node added as part of this step.
The parallel region itself can contain other OpenMP directives.
When the execution observes a parallel directive, we do
not know whether the parallel region has barriers within it.
We anticipate that such barriers can potentially occur. The
master thread executing the parallel directive captures it by
adding another S-node to the OSPG. It is added as the child
of the S-node corresponding to the parallel directive. In
Figure 2(a), S2 corresponds to the S-node added in this step.

The code block following parallel directive is executed
by a team of threads. We capture the parallel execution of the
code region by a team of threads as follows. The master thread
creates P-nodes in the OSPG for each member of the team.
These P-nodes become the children of the S-node that
were created in the previous step. In Figure 2(a), P0 and P1
represent parallel execution of the region by two threads in the
team. Any computation in the subtree under P0 will happen in

parallel with the computation under the subtree of P1 as the
left child of their LCA will be a P-node. The master thread
informs other threads in the team where to update the OSPG
by pushing the two S-nodes and the P-node corresponding
to the thread to their per-thread stack. Finally, the master also
adds a W-node as the child of its P-node in the OSPG to
capture the computation by it in the parallel region. Other
members of the team add W-nodes as the child of their
respective P-nodes. In Figure 2(a), W1 and W2 correspond
to the computation performed by the two threads in the team.

Implicit and explicit barriers. Barriers in OpenMP can
be implicit (e.g., a barrier at the end of omp parallel)
or explicit when the programmer specifies it using the omp
barrier directive. The code before the barrier executes in
series with code after it. We have already anticipated this barrier
(then in the future) and added an S-node to the OSPG. This
barrier signals the end of the subtree under that S-node. At
the end of the barrier, the team of threads executes the region
following the barrier in parallel.

The first thread reaching the barrier identifies the S-node
that was added to the OSPG in anticipation of the barrier
and creates a new S-node as its sibling. Since the region
following the barrier is executed by the team of threads in
parallel, it also creates a P-node for each thread in the team
and adds it as the child of the newly created S-node.

Eventually when a thread completes the barrier, it pops the
previous P-node and S-node on its per-thread OSPG stack
as the subtree under that S-node is now completed. It pushes
the newly created S-node and P-node corresponding to the
thread on its per-thread OSPG stack, which is the OSPG slice
being executed by that thread. It also adds a W-node as the
child of the P-node corresponding to the thread to represent
the computation done in parallel after the barrier.

In Figure 2(b), when a thread executing either W0 or W1
encounters a barrier, it identifies the S-node corresponding
to the region (i.e., S1). The first thread to reach the barrier
creates a new S-node (i.e., S2) as the sibling of S1. As there
are two threads in the team, there are two P-nodes (P2 and
P3) that are children of S2. They represent the computation
after the barrier. Any computation done in the subtree under
S2 occurs in series with the computation under S1.

The omp for directive. This directive creates a parallel
for loop using the threads in the team corresponding to the
parallel region. The omp for directive, by default, has a
barrier at the end of the loop. The programmer can specify a
nowait clause to remove the barrier. On encountering this
directive, the OpenMP runtime divides the iteration space into
chunks and assigns the chunks to the threads in the team. The
iteration space can be divided statically or dynamically. Two
different chunks can be executed serially by the same thread
in an execution even though they are logically parallel.

Our goal is to measure inherent parallelism in the program.
We have to measure work performed by each chunk where the
chunk size is specified by the user. We also need to add nodes
to the OSPG to accurately capture series-parallel relationships
between chunks. The omp for directive is encountered within

P0

W0

P0

W0 S0

P1

W1

W2

P0

W0 S0

P1

W1

W2 P2

W3

W4

P0

W0 S0

P1

W1

W2 P2

W3

W4

W5

(a) Before
(b) After first
omp task

(c) After second
omp task

(d) After
omp taskwait

Fig. 3. The OSPG construction for the following sequence of tasking
directives: omp task, another omp task following the first task, and an
omp taskwait.

the parallel region. The OSPG at that moment already contains
a P-node for each thread in the team. For each chunk of the
parallel loop, the thread executing the chunk creates a new
P-node and adds the newly created P-node as the child of
the P-node corresponding to the parallel region. The thread
also creates a W-node and adds it as the child of the newly
created P-node. The intuition is that we want all chunks that
may have executed serially (i.e., on the same thread) in a given
execution to be logically parallel with respect to the OSPG.
In Figure 2(c), the omp for is executed with two threads
(let’s say T1 and T2) in the team and each thread executes two
chunks. We create two P-nodes (P2 and P3) to represent
the chunks executed by thread T1. Each chunk has a work
node added to represent the computation performed by the
chunk (e.g., W3). Similarly, P4 and P5 represent the chunks
executed by thread T2.

The omp master directive. The structured code block
following the master directive is executed by the master thread
of the team. We create a W-node to clearly attribute the serial
work performed in the code block. Since the master thread is
already executing within the parallel region, it adds the newly
created W-node as the child of its P-node (corresponding
to the parallel region) in the OSPG. Figure 2(d) presents the
OSPG before and after executing the master directive.

The omp critical directive. This directive specifies a
region of code that must be executed by only one thread in
the team at a time. Our goal is to measure inherent parallelism.
Hence, we should not measure the waiting times experienced
in a specific execution. We split the W-node executing this
directive into three W-nodes: one representing the work before
the critical directive, one representing the work in the critical,
and one for the computation after the critical section.

The omp task directive. This directive is used to specify a
new task. The code block following the omp task directive
executes in parallel with the code after the code block. To
measure inherent parallelism, we have to identify the series-
parallel relationships between various fragments of tasks.

When the program encounters a omp task directive, we
do not know whether the program executes a taskwait
directive in the future execution (similar to barriers within
parallel regions). The thread executing the omp task directive
creates an S-node in the OSPG if it is the first task in the

program or is the first task after the taskwait directive. The
subtree under this S-node represents a set of parallel tasks
that end with a taskwait. The thread also adds a P-node
as the child of this S-node to represent the newly created task
and a W-node as the immediate right sibling of the P-node
to represent the computation in the continuation. When any
thread executes the newly created task, it adds a W-node as the
child of the P-node to represent the computation performed
by the new task. Figure 3(b) presents the OSPG after the first
omp task directive has been encountered.

On any subsequent omp task directive before the next omp
taskwait directive, there is no need to create an S-node.
We just add a P-node, a W-node as the child of the P-node,
and a W-node as the immediate right sibling of the P-node
representing the task. Figure 3(c) presents the OSPG after
encountering a second omp task directive.

The omp taskwait directive. The task executing the
omp taskwait directive will wait for all its children to
complete execution before it proceeds with the current task’s
execution. When the program executes the omp taskwait
directive, the code region after this directive executes in
series with the code before it. We have already anticipated a
taskwait (then in the future) on the first task and added
an S-node. This directive finishes the computation under
the subtree of that S-node. We add a W-node as the
immediate right sibling of this S-node to capture the work
performed after taskwait. Figure 3(d) presents the OSPG
after executing the taskwait directive.

IV. PARALLELISM PROFILE AND WHAT-IF ANALYSES

OMP-WHIP constructs the OSPG as the program executes
on a multi-core machine for a given input. The profiler
gets invoked via callbacks from the OpenMP runtime when
the program executes a specific OpenMP directive. Apart
from constructing the OSPG, OMP-WHIP also measures the
total amount of computation performed in each W-node by
programmatically using hardware performance counters. The
OSPG and the fine-grained measurement of work constitutes
an accurate performance model of the execution for a given
input, which enables what-if analyses (Section IV-C).

OMP-WHIP does not maintain the entire OSPG in memory.
Instead, it maintains a small slice of the OSPG in memory
at any point in time during profile execution (i.e., whatever
information is maintained by the per-thread stacks), which
ensures low memory overhead. Further, OMP-WHIP’s profile
execution has two modes, each with its own set of benefits.
The first mode writes the OSPG data to a file after the node
has finished and is popped from the per-thread stack, which
is subsequently used by offline analyses. Although memory
overhead is low, the log files generated can be large for long
running applications. However, the presence of the entire
OSPG enables what-if analyses for some programs without re-
execution. The second mode directly computes the parallelism
profile on-the-fly without requiring any offline analyses. It is
attractive for long-running applications. Next, we describe the

1 function WHATIFPARALLELISMPROFILE(G, R, f)
2 foreach N in bottom-up traversal of G do
3 if what-if-mode then
4 CN ← CHILDNODES(N)

5 work ←
∑

C∈CN

C.w

6 WR ← {W |W ∈ CN ∧W ∈ R}
7 foreach W ∈WR do
8 W.w ←W.w/f
9 end

10 〈w,N.s,N.l〉 ← COMPUTENODE(N)
11 N.w ← work
12 end
13 else
14 〈N.w,N.s,N.l〉 ← COMPUTENODE(N)
15 end
16 end
17 AGGREGATEPERSTATICDIRECTIVE(G)
18 return

Fig. 4. Algorithm to produce the parallelism profile and the what-if
profile given input OSPG G, regions annotated for what-if analyses R
and optimization factor f . CHILDNODES returns all the child nodes
of the input node. AGGREGATEPERSTATICDIRECTIVE aggregates the
work and serial work to produce the parallelism profile and the what-if
profile similar in format to Figure 1(c), (d), and (e).

generation of parallelism and what-if profile with an offline
analysis. We describe the on-the-fly mode in Section IV-D.

A. Offline Analysis to Compute the Parallelism Profile

The performance model has work information with each
W-node and the OSPG accurately encodes the series-parallel
relationship between various nodes. The task of the offline
analysis is to compute parallelism for each intermediate node,
which in turn requires it to compute total work and serial work
for each node. We want to accurately attribute serial work
to various nodes that contribute to the critical path under the
subtree. The critical path of an intermediate node is the longest
chain of nodes that have to be executed in series and perform
the highest serial work under the subtree. Hence, the offline
analysis also computes the list of nodes that contribute to the
critical path in the subtree under the intermediate node.

The offline analysis performs a bottom-up traversal of the
OSPG to compute the parallelism for each intermediate node.
Figure 4 and Figure 5 present the algorithm to compute the
parallelism for a program. The algorithm computes three
quantities with each intermediate node: (1) work (w), (2)
serial work (s), and (3) list of W-nodes that perform serial
work on the critical path (l). These quantities are computed
using the series-parallel relationship encoded by the OSPG
and the information of its children, which would have been
computed earlier in the bottom-up traversal. Figure 5 presents
the algorithm to compute work (w), serial work (s), and the list
of W-nodes performing serial work on the critical path (l)
for each intermediate node. The total work under the subtree
at an intermediate node is equal to the sum total of the work
performed by the children (line 3 in Figure 5).

Computing serial work. To compute serial work for an
intermediate node, we have to identify the chain of W-nodes

1 function COMPUTENODE(N)
2 CN ← CHILDNODES(N)

3 w ←
∑

C∈CN

C.w

4 WN ← WCHILDNODES(N)
5 SN ← SCHILDNODES(N)

6 s←
∑

W∈WN

W.w +
∑

S∈SN

S.s

7 l← (
⋃

S∈SN

S.l) ∪WN

8 foreach P ∈ PCHILDNODES(N) do
9 LPD ← LONGESTLEFTDEPCHAIN(P)

10 LWP ← LEFTWNODESIBLINGS(P)
11 LSP ← LEFTSNODESIBLINGS(P)

12 cw ←
∑

D∈LPD

D.s+
∑

W∈LWP

W.w+
∑

S∈LSP

S.s+P.s

13 if cw > s then
14 s← cw

15 l← LWP ∪ (
⋃

S∈LSP

S.l) ∪ (
⋃

D∈LPD

D.l) ∪ P.l

16 end
17 end
18 return 〈w, s, l〉

Fig. 5. Algorithm to compute work, serial work, and the list of
W-nodes on the critical path for the input node N in the OSPG.
WCHILDNODES, SCHILDNODES, and PCHILDNODES return the
children W-nodes, S-nodes, and P-nodes of the input node,
respectively. LEFTWNODESIBLINGS and LEFTSNODESIBLINGS re-
turn all the left W-node and S-node siblings of the input node,
respectively. LONGESTLEFTDEPCHAIN returns the set of P-nodes
that are the left siblings of the input node, dependent on the input
node through task dependency edges, and perform the highest serial
work.

that execute serially and perform the highest amount of serial
work in the subtree. We use the properties of the OSPG to
identify children that execute serially. In an OSPG without task
dependency edges, descendants of a P-node will execute in
parallel with the siblings to the right of the P-node and their
descendants. Similarly, the descendants of the P-node execute
in series with the W-nodes and the descendants of S-nodes
to the left of the P-node. In the absence of P-nodes, the
W-nodes and the S-nodes that are the children of a given
node execute serially. Each P-node creates a separate chain
of nodes in the subtree. All nodes in a single chain execute
serially. However, two such chains in the subtree logically
execute in parallel. Hence, there could be multiple such chains
of nodes that perform serial work for a given intermediate node.
Any of these chains of nodes can perform the highest serial
work and constitute the critical path. The task dependency
edges between sibling P-nodes serializes the subtrees under
the two P-nodes. These dependencies can be transitive (e.g.,
P3 depends on P2 and P2 depends on P1). These dependency
edges also need to be considered while computing serial work.

Figure 5 illustrates the computation of serial work for the
subtree under a given node. It first considers the serial work of
the chain of W-nodes and S-nodes that are direct children
of the node under consideration (lines 4-6 in Figure 5). As each
P-node creates a chain of nodes, the algorithm computes the

serial work of that chain (lines 8-17 in Figure 5). The serial
work of the chain created by the P-node is equal to the sum
of: (1) work performed by W-nodes to the left (line 10) ,
(2) serial work performed by S-nodes to the left (line 11),
(3) total serial work performed by the transitively dependent
P-nodes to the left, and (4) the serial work performed by the
subtree under the current P-node. If this chain’s serial work
is greater than the serial work seen till now, then the chain of
nodes including the current P-node becomes the new critical
path (lines 13-16 in Figure 5).

Computing the list of W-nodes on the critical path. Each
intermediate node maintains the list of W-nodes that are on
the critical path. Initially, the list of nodes on the critical path
is the union of all children W-nodes and the union of lists
of children S-nodes as it constitutes the critical path (line 7
in Figure 5). When the algorithm identifies a new critical path,
the list of W-nodes on the critical path needs to be updated.
When a P-node becomes part of the critical path, the list
of nodes contributing to the critical path is updated to be the
union of the following sets:(1) set of W-nodes to the left of
the P-node, (2) union of the lists of nodes on the critical path
within the subtree under the S-nodes to the left, (3) union of
the list of nodes on the critical path within the subtree under
dependent P-nodes to the left, and (4) list of nodes on the
critical path under the current P-node (line 15 in Figure 5).
At the end of the bottom-up traversal, each internal node will
have work, serial work, and list of W-nodes on the critical
path.

B. Summarizing the Profile for each Static Directive

Although the dynamic information computed above on
the OSPG highlights the parallelism in the program, the
programmer can perform concrete optimizations if we attribute
this information to static OpenMP directives. There are multiple
granularities for aggregating dynamic information from the
OSPG to static locations: aggregation per static location of
the directive or aggregation with respect to dynamic calling
contexts per static location (e.g., using libunwind). OMP-
WHIP, by default, restricts itself to aggregation per static
location. As part of its construction, each internal node
in the OSPG maintains static location information of the
directive (e.g., line number and filename). To aggregate work
and serial work information, the offline analysis maintains a
map with location information as the key and work/serial work
as the values. It updates the values in the map by performing
another bottom-up traversal of the OSPG. When performing
this aggregation with a bottom-up traversal, we should be
careful not to double count work and serial work when the
subtree under the current node has another node with the same
location information. Such scenarios can arise with recursive
decomposition using tasks. To measure work and serial work
accurately, the offline analysis has to subtract the values of the
nodes in the subtree with same location information and then,
add the values of the current node.

To help programmer identify specific directives exclusively
performing serial work on the critical path, the analysis

aggregates this information using the list of W-nodes on
the critical path (associated with the root node). The final
profile reports the parallelism and the percentage of serial
work on the critical path performed by each directive.

C. What-If Analyses over the Performance Model

OMP-WHIP’s parallelism profile highlights the OpenMP
directives that perform significant serial work on the critical
path and have low parallelism. These directives are likely
candidates for optimization. However, the program can have
multiple parallel chains of nodes that perform similar amounts
of serial work. Optimizing one of these chains may not increase
the parallelism. Designing a concrete parallelization strategy
takes time as it may require significant changes to the program.
A programmer would like to know whether the parallelism
increases on changes to a particular region.

We propose what-if analyses to estimate the improvement
in parallelism when a region of the program is parallelized. It
enables the user to identify changes in parallelism even before
concrete parallelization strategies have been designed. The
key enabler for these analyses is the performance model that
encodes series-parallel relationship between various W-nodes
and the measurement of work in these W-nodes. Parallelizing
a region effectively reduces the serial work performed by
it. Hence, our what-if analyses estimate the improvement in
parallelism by reducing the serial work of the regions of interest
while keeping the total work exactly as before, which mimics
the effect of parallelization.

To use what-if analyses, programmers annotate the region
of code that they plan to optimize using OMP-WHIP’s
annotations. OMP-WHIP re-executes the program to accurately
measure the amount of computation performed solely in the
annotated regions. Each static annotation can correspond to
multiple W-nodes in the dynamic execution. If the annotated
regions exactly correspond to W-nodes in the performance
model before annotations, a re-execution is not necessary. Oth-
erwise, when OMP-WHIP re-executes the annotated program,
it measures the total amount of computation in the W-node
before, within, and after the annotated region.

In the offline analysis, OMP-WHIP produces a what-if
profile that reports the parallelism and the serial work on the
critical path for each directive when the annotated regions are
optimized by the user-specified threshold. Figure 4 presents the
algorithm to perform what-if analyses (lines 4-11 in Figure 4).
When OMP-WHIP performs its what-if analyses, it performs a
bottom-up traversal of the OSPG. For each intermediate node,
it computes the total work under the subtree as before (lines 5
and 11 in Figure 4). Then it computes the serial work and the
list of W-nodes on the critical path after it has reduced the
serial work of the W-nodes corresponding to the annotated
regions by the user-specified threshold (lines 6-9 in Figure 4).

D. On-the-fly Parallelism Profile

OMP-WHIP’s second mode computes the profile on-the-fly
and does not generate OSPG log files. To compute profiles
on-the-fly, OMP-WHIP maintains two additional quantities

(along with w, s, and l as before) with each node on the
per-thread stack : (1) total serial work performed by the
sibling W-nodes and S-nodes to the left, and (2) the list
of W-nodes performing the highest serial work among the
left W-node siblings and the left S-node siblings and their
descendants. When a new node is pushed to the per-thread
stack, the serial work performed by the siblings to the left
has already been measured and these two additional quantities
are the initialized by the parent. When the node is popped,
OMP-WHIP checks if the node is part of the critical path and
updates the parent’s work, serial work, and list of W-nodes
on the critical path (similar to lines 12-16 in Figure 5).

V. EXPERIMENTAL EVALUATION

Prototype. The OMP-WHIP prototype profiles C/C++
OpenMP programs and consists of two modules: (1) a static
library that is linked with the application during compilation,
which supports both offline and on-the-fly profiling modes,
and (2) a standalone analyzer to perform offline analysis. The
profile execution library uses OMPT [21] to intercept calls to
the OpenMP runtime to construct the OSPG and to perform fine-
grained work measurement. The current OMP-WHIP prototype
works with LLVM+Clang-5.0 1. We modified the Clang-5.0
OpenMP runtime to add new OMPT callbacks to support
parallel for loops with dynamic scheduling and tasks to measure
inherent parallelism. OMP-WHIP uses the perf events
module in Linux to read hardware performance counters to
measure work. OMP-WHIP can measure work with execution
cycles and dynamic instructions, which estimates work ignoring
secondary effects of execution (e.g., cache misses). OMP-
WHIP supports OpenMP-4.5’s common core including work-
sharing and tasking directives. It does not support offloading
and nested parallelism yet. Our prototype is open source [22].

To test the effectiveness of the profiler, we profiled
43 OpenMP applications from Sequoia [24], Coral [25],
PBBS [26], BOTS [27], Kastors [28], and NAS [29] benchmark
suites. All experiments were performed on a 16-core 2.1 GHz
Intel Xeon machine. The profiler with post-mortem analysis is
80% slower on average when compared to parallel execution
without any profiling code. The time taken for post-mortem
analysis depends on the size of the OSPG (ranges from seconds
to hours). In contrast, the on-the-fly profiler is 62% slower
on average compared to an execution without profiling. The
resident memory overhead is on average 28% in both modes
compared to the baseline.

Profiling work-sharing applications with OMP-WHIP.
We used OMP-WHIP to measure inherent parallelism and
perform what-if analyses with 32 applications (8 Coral/Sequoia
applications, 16 PBBS programs ported to OpenMP, and 8
NAS applications) with work-sharing directives. We found
bottlenecks in all of them. On average, we identified 2 or
more regions in these applications through what-if analyses.
Subsequently, we parallelized one PBBS and two Coral
(AMGmk and Quicksilver) applications.

1We are working on the OMP-WHIP prototype for LLVM+Clang-6.0 [22],
which partially implements the latest specification of OpenMP [2].

Parallel
-ism
6.93

10.57
11.53

13.63

Serial work
percent
47.95

20.36
1.58

29.17
Program

csr.c:172
relax.c:87

relax.c:91

I. AMGmk
Directive
Location

(a) Initial parallelism profile

Parallel
-ism
11.62

10.56
11.4

13.11

Serial work
percent
20.47

21.43
2.75

52.32
Program

csr.c:172
relax.c:87

relax.c:91

Directive
Location

(b) What-if profile

Parallel
-ism
11.43

15.79
9.14

13.11

Serial work
percent
17.44

21.31
3.52

51.87
Program

csr.c:179
vect.c:383

relax.c:91

Directive
Location

(c) Final parallelism profile

Parallel
-ism
2.94

20.61
693.1

5.87

Serial work
percent
97.82

0.48
0.12

1.44
Program

seq.h:429
spec.h:72

seq.h:403

III. MinSpanningForest
Directive
Location

(a) Initial parallelism profile

Parallel
-ism
89.41

59.83
20.59

51.78

Serial work
percent
14.62

28.53
13.47

31.41
Program

sort.h:100
seq.h:443

sort.h:126

Directive
Location

(b) What-if profile

Parallel
-ism
95.83

59.76
20.57

52.09

Serial work
percent

9.48

30.2
14.23

33.24
Program

sort.h:100
seq.h:443

sort.h:126

Directive
Location

(c) Final parallelism profile

Parallel
-ism
13

14.16

Serial work
percent

8.85
91.15

Program
mc.hh:4

II. Quicksilver
Directive
Location

(a) Initial parallelism profile

Parallel
-ism
86.79
210.9

Serial work
percent
59.12
40.88

Program
mc.hh:4

Directive
Location

(b) What-if profile

Parallel
-ism
85.37
190.98

Serial work
percent
55.59
44.41

Program
mc.hh:4

Directive
Location

(c) Final parallelism profile

Parallel
-ism
1.13

1.86
11.26

1.38

Serial work
percent
98.96

0.19
0.14

0.44
Program

seq.h:403
CK.C:226

seq.h:123

IV. Nbody
Directive
Location

(a) Initial parallelism profile

Parallel
-ism
15.2

1.86
11.07

1.37

Serial work
percent
85.79

2.55
1.88

5.99
Program

seq.h:403
CK.C:227

seq.h:123

Directive
Location

(b) What-if profile

Parallel
-ism
85.54

1.86
11.17

1.39

Serial work
percent
17.32

14.29
10.37

32.53
Program

seq.h:403
CK.C:227

seq.h:123

Directive
Location

(c) Final parallelism profile

Fig. 6. The original parallelism profile, the what-if profile , and the final
parallelism profile after the annotated regions were parallelized for a sample
of the applications profiled using OMP-WHIP. The topmost line in each
profile reports the inherent parallelism of the program and the percentage of
serial work performed in the program. The rest, list the parallelism and the
percentage of serial work for an OpenMP directive. We list only the top three
directives ordered according to the percentage of serial work.

Speedup with AMGmk. The AMGmk program from the
LLNL Coral benchmark suite [25] is an algebraic multigrid
solver that uses OpenMP for parallelization. The program is
made of three main kernel functions - a compressed sparse
matrix multiply, an algebraic mesh relaxation, and a vector
operation. Initially, the speedup over serial execution on a
16-core machine was 5.39×. To understand bottlenecks, we
generated OMP-WHIP’s inherent parallelism profile, which
is shown in Figure 6(I)(a). The entire program has a paral-
lelism of 6.93 and regions that are not associated with any
directive exclusively perform 47.95% of the serial work (line
corresponding to Program in Figure 6(I)(a)). On examining the
source code, we observed that parallel regions were interspersed
with serial code spanning multiple files. We annotated the
first such region and used OMP-WHIP’s what-if analyses to
obtain an estimate of the increase in parallelism when this
region is optimized by 16×. The what-if profile showed a
slight increase in parallelism from 6.93 to 8.02. To further
increase the parallelism, we annotated one more serial region
and generated the what-if profile when both the regions are
hypothetically parallelized on 16-cores. Figure 6(I)(b) shows
the what-if parallelism profile where the parallelism of the
program increases to 11.62. If we optimize these two regions,
the parallelism almost doubles.

Subsequently, we examined these regions closely to paral-
lelize them. The first region in the sparse matrix multiply kernel
contained for loops that initialized a vector and performed the

algebraic operation on each element in the vector. Similarly, the
second region contained the vector operation kernel with for
loops. We parallelized both regions with the omp parallel
for directive. The parallelism profile after concrete paral-
lelization of the program is shown in Figure 6(I)(c), which
almost attains the same parallelism as the estimate from what-if
analyses. There is a small difference between the estimate and
the final measured parallelism because the regions for what-if
analyses contained other code along with the parallelized loops.
Moreover, the speedup of the program increased from 5.39×
to 9.13× on a 16-core machine.

Speedup with Quicksilver. Quicksilver [30] is a Coral
application that solves a simplified dynamic Monte Carlo
particle transport problem. We configured it to run on a
single node machine and used the Coral2_P_1 input to profile
the program. The program has a parallelism of 12.99 (see
Figure 6(II)(a)). It has a single omp parallel for loop
that iterates over the number of particles being simulated. We
annotated the body of the loop and used what-if analyses to
check if the parallelism increases when it is optimized by
16×. Figure 6(II)(b) presents the what-if profile that shows the
increase in parallelism for both the directive (to 210.9) and
the program (to 86.79). We noticed that the loop was using
static scheduling and there was load imbalance. We changed
the loop to use dynamic scheduling. Figure 6(II)(c) shows the
final parallelism profile after these optimizations. The speedup
also increased from 11.83× to 12.8× on a 16-core machine.

Speedup with Delaunay Triangulation. This PBBS appli-
cation [26] computes the delaunay triangulation of a given
set points. It had a speedup of 1.08×. We identified a loop
that matters using OMP-WHIP’s what-if analyses. Subsequent
parallelization increased the speedup from 1.08× to 9.23× [22].

Profiling applications with tasking. Apart from the applica-
tions that use work-sharing directives, we identified bottlenecks
in 11 applications using tasking directives from the BOTS [27]
and the Kastors [28] benchmark suites. We increased the
speedup of five applications using OMP-WHIP’s what-if
analyses: four applications from PBBS and one application from
the Kastors suite. The Strassen benchmark, which uses tasking
and task dependencies, performs parallel recursive matrix
multiplication. OMP-WHIP’s what-if analyses highlighted that
reducing the work in the base case can improve parallelism.
When we reduced the work in the base case, the speedup
increased from 14× to 15.6× on a 16-core machine.

Speedup with Minimum Spanning Forest. This program
computes the minimum spanning forest of a graph using the
parallel Kruskal algorithm. It initially had a speedup of 1.95×
over serial execution. It had low parallelism (i.e., 2.94 in
Figure 6(III)(a)). OMP-WHIP’s what-if analyses helped us
find two regions which when hypothetically optimized by
16× can increase the parallelism to 35.7. We noticed that
these regions were calling the serial sort function and we
replaced them with the parallel sort function already present
in the program. The speedup increased from 1.95× to 7.6×.
When we ran the modified program with OMP-WHIP’s
what-if analyses, it showed that optimizing regions in the

functions called by parallel sort can improve parallelism to
89.41 (see Figure 6(III)(b)). We parallelized the recursive block
transpose function within this region using OpenMP tasks. The
program’s parallelism increased to 95.83 (see Figure 6(III)(c)).
The parallelism in the final parallelism profile is higher than
the estimate from what-if analyses because what-if analyses
hypothetically optimized the region by 16× (assuming parallel
execution on 16 cores). However, our parallelization created
more tasks. Our changes increased the speedup from initial
1.95× to 8.9×.

Speedup with NBody. NBody computes the gravitational
force vector of each point due to all other points. The
OpenMP port of this PBBS application primarily uses omp
for directives. Hence, the speedup was 1.08× and parallelism
was 1.13 (see Figure 6(IV)(a)). Our what-if analyses suggested
that parallelizing code in the non-parallel regions by 16× can
increase the parallelism to 15.2 (see Figure 6(IV)(b)). We
identified a recursive function that was invoked on a disjoint
set of vertices in the non-parallel region. We transformed it
to recursively spawn tasks, which increased the parallelism
to 85.54 (see Figure 6(IV)(c)). These changes increased the
speedup from 1.08× to 14.77×.

Speedup with ConvexHull. This PBBS application com-
putes the convex hull of points in a 2D space. It is also
parallelized with work-sharing directives. It had low parallelism
and low speedup. Our what-if analyses helped us find two
regions that can improve parallelism. We optimized one
region using the omp for loop and another using recursive
decomposition with tasks. The parallelism increased from 2.51
to 220. The speedup increased from 2.11× to 11.1×.

Comparison with other OpenMP tools. As a point of
comparison, we also profiled the above 7 applications with
three existing tools: Intel VTune Amplifier [5], HPCToolkit [10]
and Scalasca [14], [31]. These tools either measure work or a
set of metrics to characterize performance and attribute it to the
dynamic call-sites and OpenMP regions. Although these tools
highlight the OpenMP regions with load imbalance, they do
not identify all the serialization bottlenecks that were identified
by OMP-WHIP. For example, HPCToolkit and Scalasca
both identify two omp parallel regions in AMGmk and
ConvexHull as the root cause of load imbalance. When we
parallelized these regions, the speedup and the parallelism
did not change. Further, these regions are different from the
serialization bottlenecks identified by OMP-WHIP. Similarly,
VTune does not highlight the bottlenecks in AMGmk but is
able to highlight only one out of the two regions in ConvexHull.

VI. RELATED WORK

A large body of work exists on profiling OpenMP pro-
grams [3], [5]–[8], [10], [11], [13], [14], [32]. Profiling tools
like Intel VTune Amplifier [5], TAU [9] and HPCToolkit [10]
use hardware event-based sampling to compute performance
metrics and associate the metrics to the source code calling
context. Trace-based performance analysis tools [11], [13],
[14], [33]–[35] provide a way to visualize the execution time
behavior of an application, which can be used to identify

load imbalances. To determine the root cause of performance
problems, tools that identify functions on the critical path
have been proposed [31], [36]–[40]. Numerous performance
modeling tools that can be used to identify critical paths and
possible scalability bottlenecks have also been explored [41]–
[45]. These techniques present a thread-based view of execution,
which provides little information about parallelism, varies
across schedules, and does not enable what-if analyses.

Parallelism estimates. There are numerous efforts to
measure either inherent parallelism or provide a speedup
estimate [20], [46]–[51]. One can provide an estimate of
execution by comparing performance metrics from executions
using expectations [52], work-time inflation [53], difference
of profiles [54], and/or memory access time expectations [45].
Parallel Prophet [50] and Kismet [48] provide an estimate
of potential speedup from parallelizing sequential programs.
Cilk tools [46], [47] measure inherent parallelism in an online
fashion without maintaining an explicit series-parallel repre-
sentation. However, these techniques require serial execution.
Dimemas [55], [56] is a simulation based performance analysis
tool for MPI programs that estimates performance improvement
by optimizing application functions and network communica-
tion. Unfortunately, it primarily highlights improvements for
bottlenecks observed in a specific execution.

Causal profilers. Our work is closely related to causal pro-
filing for parallel programs [20], [57]. COZ [57] measures the
benefit of optimizing a line of the program by virtually speeding
up the line of code. It slows down all other parallel threads
and develops an analytical model to compute the speedup.
Coz estimates the speedup in a particular execution. It cannot
estimate performance benefits in task parallel environments
in the presence of work stealing. TASKPROF [20] measures
inherent parallelism, builds a series-parallel relationship for task
parallel programs, and can also estimate the improvements in
parallelism. OMP-WHIP is inspired by TASKPROF. In contrast,
OMP-WHIP includes a novel series-parallel graph abstraction
that handles both work-sharing and tasking constructs in
OpenMP and a novel algorithm to construct the OSPG.

VII. CONCLUSION AND FUTURE WORK

We make a case for measuring inherent parallelism and
built the OMP-WHIP profiler to measure it. The novel
OSPG representation of the execution enables OMP-WHIP
to precisely identify the series-parallel relationship between
various program fragments. The fine-grained measurements
and the OSPG together constitute a performance model of an
execution, which enables us to effectively identify bottlenecks
that matter. As future work, we will extend OMP-WHIP
to identify regions experiencing secondary effects, identify
appropriate grain sizes to minimize OpenMP runtime overhead,
and support offloading and hybrid MPI+OpenMP programs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This
paper is based on work supported in part by NSF CAREER
Award CCF-1453086 and NSF Award CNS-1441724.

REFERENCES

[1] OpenMP Architecture Review Board, “OpenMP 4.5 complete
specification,” Nov. 2015. [Online]. Available: http://www.openmp.org/
wp-content/uploads/openmp-4.5.pdf

[2] ——, “OpenMP 5.0 public comment draft,” Jul. 2018. [Online].
Available: http://www.openmp.org/wp-content/uploads/openmp-TR7.pdf

[3] K. Fürlinger and M. Gerndt, “ompP: A profiling tool for OpenMP,” in
Proceedings of the 2005 and 2006 International Conference on OpenMP
Shared Memory Parallel Programming, ser. IWOMP’05/IWOMP’06,
2008, pp. 15–23.

[4] B. Mohr, A. D. Malony, S. Shende, and F. Wolf, “Design and prototype
of a performance tool interface for OpenMP,” Journal of Supercomputing,
pp. 105–128, 2002.

[5] Intel. Corporation. (2018) Intel VTune Amplifier 2018. [Online].
Available: https://software.intel.com/en-us/intel-vtune-amplifier-xe

[6] Cray Inc. (2015) Using Cray Performance Measurement and Analysis
Tools. [Online]. Available: http://docs.cray.com/PDF/Cray_Performance_
Measurement_and_Analysis_Tools_User_Guide_640.pdf

[7] (2018) Arm MAP. [Online]. Available: https://developer.arm.com/
products/software-development-tools/hpc/arm-forge/arm-map

[8] The Portland Group, “PGI profiler user’s guide - PGI compilers,” 2017.
[Online]. Available: https://www.pgroup.com/doc/pgprofug.pdf

[9] S. S. Shende and A. D. Malony, “The Tau parallel performance system,”
International Journal of High Performance Computing Applications, pp.
287–311, 2006.

[10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance analysis
of optimized parallel programs http://hpctoolkit.org,” Concurrency and
Computation : Practice & Experience - Scalable Tools for High-End
Computing, pp. 685–701, 2010.

[11] (2018) Paraver. [Online]. Available: https://tools.bsc.es/
[12] (2018) ParaFormance. [Online]. Available: https://www.paraformance.

com/
[13] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,

M. S. Müller, and W. E. Nagel, “The Vampir performance analysis
tool-set,” in Tools for High Performance Computing, 2008, pp. 139–155.

[14] F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and
Z. Szebenyi, Usage of the SCALASCA toolset for scalable performance
analysis of large-scale parallel applications, 2008, pp. 157–167.

[15] Oracle. (2017) Oracle Developer Studio. [Online]. Available: https:
//www.oracle.com/tools/developerstudio/index.html

[16] X. Liu, J. Mellor-Crummey, and M. Fagan, “A new approach for
performance analysis of OpenMP programs,” in Proceedings of the
27th International ACM Conference on International Conference on
Supercomputing, ser. ICS, 2013, pp. 69–80.

[17] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable
and precise dynamic datarace detection for structured parallelism,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI, 2012, pp. 531–542.

[18] A. Yoga, S. Nagarakatte, and A. Gupta, “Parallel data race detection
for task parallel programs with locks,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE, 2016, pp. 833–845.

[19] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races in
Cilk programs,” in Proceedings of the 9th ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA, 1997, pp. 1–11.

[20] A. Yoga and S. Nagarakatte, “A fast causal profiler for task parallel
programs,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017, 2017, pp. 15–26.

[21] A. Eichenberger, J. Mellor-Crummy, M. Schulz, N. Copty, J. Cownie,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “OpenMP technical
report 2 on the ompt interface,” Mar. 2014. [Online]. Available:
http://www.openmp.org/wp-content/uploads/ompt-tr2.pdf

[22] N. Boushehrinejadmoradi, A. Yoga, and S. Nagarakatte. (2018) OMP-
WHIP. [Online]. Available: https://github.com/rutgers-apl/omp-whip

[23] R. Raman, “Dynamic data race detection for structured parallelism,”
Ph.D. dissertation, Rice University, 2012.

[24] Lawrence Livermore National Laboratory. (2018) LLNL sequoia
benchmarks. [Online]. Available: https://asc.llnl.gov/sequoia/benchmarks

[25] CORAL benchmarks. [Online]. Available: https://asc.llnl.gov/
CORAL-benchmarks/

[26] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem based
benchmark suite,” in Proceedings of the 24th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA, 2012, pp.
68–70.

[27] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
OpenMP tasks suite: A set of benchmarks targeting the exploitation
of task parallelism in OpenMP,” in 2009 International Conference on
Parallel Processing, 2009, pp. 124–131.

[28] P. Virouleau, P. Brunet, F. Broquedis, N. Furmento, S. Thibault,
O. Aumage, and T. Gautier, “Evaluation of OpenMP dependent tasks
with the KASTORS benchmark suite,” in Using and Improving OpenMP
for Devices, Tasks, and More, 2014, pp. 16–29.

[29] NAS parallel benchmarks. [Online]. Available: https://www.nas.nasa.
gov/publications/npb.html

[30] (2017) A proxy app for the monte carlo transport code, mercury. llnl-
code-684037. [Online]. Available: https://github.com/LLNL/Quicksilver

[31] D. Böhme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer,
“Scalable critical-path based performance analysis,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012, pp.
1330–1340.

[32] H. Servat, G. Llort, K. Huck, J. GiméNez, and J. Labarta, “Framework
for a productive performance optimization,” Parallel Comput., vol. 39,
no. 8, pp. 336–353, 2013.

[33] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and
S. Cranford, “Open | SpeedShop: An open source infrastructure for
parallel performance analysis,” Sci. Program., pp. 105–121, 2008.

[34] Y. Ding, K. Hu, K. Wu, and Z. Zhao, “Performance monitoring and
analysis of task-based OpenMP,” PLOS ONE, pp. 1–12, 2013.

[35] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach, “Aftermath:
A graphical tool for performance analysis and debugging of fine-grained
task-parallel programs and run-time systems,” in Seventh Workshop on
Programmability Issues for Heterogeneous Multicores (MULTIPROG-
2014), Jan 2014.

[36] Y. Oyama, K. Taura, and A. Yonezawa, “Online computation of critical
paths for multithreaded languages,” in Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing, ser. IPDPS,
2000, pp. 301–313.

[37] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and
T. Torzewski, “IPS-2: The second generation of a parallel program
measurement system,” IEEE Transactions on Parallel and Distributed
Systems, vol. 1, no. 2, pp. 206–217, Apr. 1990.

[38] J. K. Hollingsworth and B. P. Miller, “Slack: A new performance metric
for parallel programs,” University of Wisconsin-Madison, Tech. Rep.,
1994.

[39] F. Schmitt, J. Stolle, and R. Dietrich, “CASITA: A tool for identifying
critical optimization targets in distributed heterogeneous applications,” in
2014 43rd International Conference on Parallel Processing Workshops,
2014, pp. 186–195.

[40] C. Alexander, D. Reese, and J. C. Harden, “Near-critical path analysis
of program activity graphs,” in Proceedings of the Second International
Workshop on Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems, ser. MASCOTS ’94, 1994, pp. 308–317.

[41] C. Q. Yang and B. P. Miller, “Critical path analysis for the execution
of parallel and distributed programs,” in [1988] Proceedings. The 8th
International Conference on Distributed, 1988, pp. 366–373.

[42] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013, pp.
45:1–45:12.

[43] P. Reisert, A. Calotoiu, S. Shudler, and F. Wolf, “Following the blind
seer – creating better performance models using less information,” in
Euro-Par 2017: Parallel Processing, 2017.

[44] M. Schulz, “Extracting critical path graphs from mpi applications,” in
2005 IEEE International Conference on Cluster Computing, 2005, pp.
1–10.

[45] X. Liu and B. Wu, “ScaAnalyzer: A tool to identify memory scalability
bottlenecks in parallel programs,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC, 2015, pp. 47:1–47:12.

[46] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson, and C. E.
Leiserson, “The Cilkprof scalability profiler,” in Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Architectures, ser.
SPAA, 2015, pp. 89–100.

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-TR7.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://docs.cray.com/PDF/Cray_Performance_Measurement_and_Analysis_Tools_User_Guide_640.pdf
http://docs.cray.com/PDF/Cray_Performance_Measurement_and_Analysis_Tools_User_Guide_640.pdf
https://developer.arm.com/products/software-development-tools/hpc/arm-forge/arm-map
https://developer.arm.com/products/software-development-tools/hpc/arm-forge/arm-map
https://www.pgroup.com/doc/pgprofug.pdf
https://tools.bsc.es/
https://www.paraformance.com/
https://www.paraformance.com/
https://www.oracle.com/tools/developerstudio/index.html
https://www.oracle.com/tools/developerstudio/index.html
http://www.openmp.org/wp-content/uploads/ompt-tr2.pdf
https://github.com/rutgers-apl/omp-whip
https://asc.llnl.gov/sequoia/benchmarks
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://github.com/LLNL/Quicksilver

[47] Y. He, C. E. Leiserson, and W. M. Leiserson, “The Cilkview scalability
analyzer,” in Proceedings of the Twenty-second Annual ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA, 2010, pp.
145–156.

[48] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: Parallel
speedup estimates for serial programs,” in Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA, 2011, pp. 519–536.

[49] A. Muddukrishna, P. A. Jonsson, A. Podobas, and M. Brorsson, “Grain
graphs: OpenMP performance analysis made easy,” in Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’16, 2016, pp. 28:1–28:13.

[50] M. Kim, P. Kumar, H. Kim, and B. Brett, “Predicting potential speedup
of serial code via lightweight profiling and emulations with memory
performance model,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, 2012, pp. 1318–1329.

[51] V. S. Adve and M. K. Vernon, “Parallel program performance prediction
using deterministic task graph analysis,” ACM Trans. Comput. Syst.,
vol. 22, no. 1, pp. 94–136, 2004.

[52] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko, “Scalability
analysis of SPMD codes using expectations,” in Proceedings of the 21st

Annual International Conference on Supercomputing, ser. ICS ’07, 2007,
pp. 13–22.

[53] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins, “Charac-
terizing and mitigating work time inflation in task parallel programs,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12, 2012, pp.
65:1–65:12.

[54] M. Schulz and B. R. de Supinski, “Practical differential profiling,” in Euro-
Par 2007 Parallel Processing: 13th International Euro-Par Conference,
Rennes ,France , August 28-31, 2007. Proceedings, 2007, pp. 97–106.

[55] V. Subotic, J. C. Sancho, J. Labarta, and M. Valero, “A simulation
framework to automatically analyze the communication-computation
overlap in scientific applications,” in Proceedings of the 2010 IEEE
International Conference on Cluster Computing, ser. CLUSTER ’10,
2010, pp. 275–283.

[56] C. Rosas, J. Giménez, and J. Labarta, “Scalability prediction for
fundamental performance factors,” Supercomput. Front. Innov.: Int. J.,
vol. 1, no. 2, pp. 4–19, 2014.

[57] C. Curtsinger and E. D. Berger, “Coz: Finding code that counts with
causal profiling,” in Proceedings of the 25th Symposium on Operating
Systems Principles, ser. SOSP, 2015, pp. 184–197.

APPENDIX

A. Abstract

This artifact description contains the information to access
the source code for OMP-WHIP. The artifact includes the
sources and the applications for which we could increase
the speedup as described in the evaluation section of the
paper. It also includes instructions to build OMP-WHIP, build
various applications with various configurations, and generate
the results as described in the paper.

B. Description
1) Check-list (artifact meta information):
• Algorithm: The paper describes the algorithm to construct the

novel OpenMP Series Parallel Graph (OSPG) and to generate
parallelism and what-if profiles in the offline analysis.

• Program: C++ source code, C and C++ libraries
• Compilation: llvm clang++ 5.0 with C++11 flag. -g flag for

case studies
• Binary: C++ and OpenMP programs
• Data set: Included in the applications
• Run-time environment: Ubuntu 16.04 LTS with llvm 5.0

compiled with a modified llvm OpenMP runtime. We also require
perf events module in Linux.

• Hardware: Any Intel CPU with perf access to Hardware
performance counters (Intel Xeon Gold 6130 @ 2.10GHz as
tested)
the

• Execution: Command line execution as described in the respec-
tive README files.

• Output: A parallelism profile and what-if profile in csv format
• Experiment workflow: Compile modified OpenMP runtime.

Compile profiler to generate profiler library. Compile provided
applications with the profiler. Execute the program. If on-the-fly
mode is chosen, the profiles are generated after the program
completes execution. In the offline-mode, run the offline analyzer
provided with the profiler to produce parallelism profiles and
what-if profiles.

• Publicly available?: Yes. It is publicly available on GitHub [22].
2) How software can be obtained: The source code of the

profiler, offline analyzer, and modifications to the OpenMP
runtime are available on GitHub at this URL: https://github.
com/rutgers-apl/omp-whip.

3) Hardware dependencies: To reproduce the program
profiles reported in the evaluation, an Intel CPU with hardware
performance counters is necessary. All experiments were
performed on a 16-core Intel Xeon Gold 6130 @ 2.10GHz
machine. The tool only works on native hardware. To check if
the machine supports hardware performance counters, use the
command,

$ dmesg | grep PMU

If the output is “Performance Events: Unsupported...”, then the
machine does not support performance counters and OMP-
WHIP cannot be executed on the machine.

4) Software dependencies: There are three main software
dependencies.
• Linux Ubuntu 16.04 LTS distribution with perf
events module installed.

• LLVM+Clang-5.0 compiled with the provided OpenMP
runtime with OMPT support.

• Common packages such as Git, Cmake, and Python2.7.

5) Datasets: The inputs to various applications to reproduce
the results are either included in the artifact or can be generated
by the programs provided in the artifact.

C. Installation

Clone the OMP-WHIP source code from https://github.com/
rutgers-apl/omp-whip. We provide two bash scripts to automate
the installation of OMP-WHIP and all the dependencies. To
build OMP-WHIP and its dependencies run,

$ source setup-llvm.sh
$ source setup-ompwhip.sh

A successful build will compile LLVM/Clang, create the
static libraries for OMP-WHIP and also setup the appropriate
environment variables. Note, the bash script has to be sourced
at the command-line. The installation will fail if it is run as an
executable (i.e, with ./). The README file in the base directory
of the package also provides detailed instructions on installation
for both the on-the-fly mode and the offline-mode. To use the
on-the-fly profiler mode, run source setup-ompwhip-online.sh.

D. Experiment workflow

To download the applications for which we could improve
speedups, use the link provided in README.md. Once
downloaded use,

$tar -xvf applications.tar

There is a README file in each application directory providing
information to reproduce our results. Here are the steps to
check performance results: (1) build the baseline serial version
following the instructions in the README of that application,
(2) build the parallel version with our optimizations, and (3)
follow the instructions in the README to execute them and
measure speedup.

To profile an application, the general strategy is described
below:

• Follow the instructions in the README to obtain inputs.
Each application either has a pre-packaged input or it is
generated through an auxiliary program.

• Build the application with the profiler. README provides
detailed instructions. A simple make command will
build the application with the profiler linked in for all
applications.

• Execute the application with the inputs as specified.
• Run the offline analyzer using the instructions in the

README. Follow the instructions in the README to
understand the output of the profiler. The offline analysis
step can be skipped if the on-the-fly profiling mode is
selected.

• Either add annotations to the source or use the already
packaged application with annotations and use the profiler
to perform what-if analyses. Rerun the offline analyzer to
see the results of what-if analyses.

https://github.com/rutgers-apl/omp-whip
https://github.com/rutgers-apl/omp-whip
https://github.com/rutgers-apl/omp-whip
https://github.com/rutgers-apl/omp-whip

E. Evaluation and expected result

Each application has a README in its directory that
provides detailed instructions on how to run the application,
profile it, and the expected results. To automate the build
process, execution, generation of speedup information, and
omp-whip profiles for each application, we provide two
python scripts in the directory of each application. The script
generate_results.py generates results for offline profiling mode.
Similarly, the script generate_results_online.py generates results
for on-the-fly profiling mode.

	Introduction
	Overview of Profiling and What-If Analyses
	OpenMP Series Parallel Graph
	OSPG and its Properties
	OSPG Construction during Program Execution

	Parallelism Profile and What-If Analyses
	Offline Analysis to Compute the Parallelism Profile
	Summarizing the Profile for each Static Directive
	What-If Analyses over the Performance Model
	On-the-fly Parallelism Profile

	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References
	Appendix
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected result

