
A Fast Causal Profiler for Task Parallel Programs

Adarsh Yoga
Rutgers University, USA

adarsh.yoga@cs.rutgers.edu

Santosh Nagarakatte
Rutgers University, USA

santosh.nagarakatte@cs.rutgers.edu

ABSTRACT

This paper proposes TaskProf, a proiler that identiies parallelism

bottlenecks in task parallel programs. It leverages the structure of a

task parallel execution to perform ine-grained attribution of work

to various parts of the program. TaskProf’s use of hardware perfor-

mance counters to perform ine-grained measurements minimizes

perturbation. TaskProf’s proile execution runs in parallel using

multi-cores. TaskProf’s causal proile enables users to estimate

improvements in parallelism when a region of code is optimized

even when concrete optimizations are not yet known. We have

used TaskProf to isolate parallelism bottlenecks in twenty three

applications that use the Intel Threading Building Blocks library.

We have designed parallelization techniques in ive applications to

increase parallelism by an order of magnitude using TaskProf. Our

user study indicates that developers are able to isolate performance

bottlenecks with ease using TaskProf.

CCS CONCEPTS

· Computing methodologies → Parallel computing methodolo-

gies; · Software and its engineering→ Software performance;

KEYWORDS

TaskProf, Proilers, Task parallelism, Intel TBB, Causal proiles

ACM Reference Format:

Adarsh Yoga and Santosh Nagarakatte. 2017. A Fast Causal Proiler for Task

Parallel Programs. In Proceedings of 2017 11th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Paderborn, Germany, September 4ś8,

2017 (ESEC/FSE’17), 12 pages.

https://doi.org/10.1145/3106237.3106254

1 INTRODUCTION

Task parallelism is an efective approach to write performance

portable code [20]. In this model, the programmer speciies ine-

grained tasks and the runtime maps these tasks to processors

while automatically balancing the workload using work stealing

algorithms. Many task parallelism frameworks have become main-

stream (e.g., Intel Threading Building Blocks (TBB) [37], Cilk [16],

Microsoft Task Parallel Library [27], Habanero Java [5], X10 [6],

and Java Fork/Join tasks [26]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106254

A common metric used to quantify the performance of a task

parallel program is asymptotic parallelism, which measures the

potential speedup when the program is executed on a large number

of processors. It is constrained by the longest chain of tasks that

must be executed sequentially (also known as the span or the crit-

ical work). Hence, asymptotic parallelism is the ratio of the total

work and the critical work performed by the program for a given

input. A scalable program must have large asymptotic parallelism.

A task parallel program can have low asymptotic parallelism due to

multiple factors: coarse-grained tasks, limited work performed by

the program, and secondary efects of execution such as contention,

low locality, and false sharing.

Numerous techniques have been proposed to address various

bottlenecks in bothmultithreaded programs [7, 11, 13, 29ś31, 42, 45]

and task parallel programs [21, 38]. These techniques range from

identifying critical paths [22, 33, 35], parallelism [21, 38], synchro-

nization bottlenecks [7, 11, 13, 42, 45], and other performance

pathologies [29ś31]. Tools for multithreaded programs identify

bottlenecks in a speciic execution on a speciic machine, which

does not necessarily provide information about the scalability of

the program. In contrast, tools that measure asymptotic parallelism

in task parallel programs run the program serially [21, 38], which

is feasible only when the task parallel model provides serial seman-

tics (e.g., Cilk) [16]. Although they identify parallelism bottlenecks,

they do not provide information on regions of code that matter in

improving asymptotic parallelism.

This paper proposes TaskProf, a fast and causal proiler that

measures asymptotic parallelism in task parallel programs for a

given input. TaskProf’s causal proile allows users to estimate

improvements in parallelism when regions of code are optimized

even before concrete optimizations for them are known. TaskProf

has three main goals: (1) to minimize perturbation (also known as

interference [19]) while accurately computing asymptotic paral-

lelism and critical work for each spawn site (source code location

where a task is created), (2) to run the proiler in parallel, and (3)

to provide feedback on regions of code that matter in increasing

parallelism.

TaskProf computes an accurate parallelism proile by perform-

ing ine-grained attribution of work to various parts of the program

using the structure of a task parallel execution. The execution of

a task parallel program can be represented as a tree (speciically

Dynamic Program Structure Tree (DPST) [36]), which captures the

series-parallel relationships between tasks and can be constructed

in parallel. Given a task parallel program, TaskProf constructs the

DPST in parallel during program execution and attributes work

to the leaves of the DPST. To minimize perturbation, TaskProf

uses hardware performance counters to measure work performed

in regions without any task management constructs, which corre-

spond to the leaves in the DPST. TaskProf writes the DPST and

the work performed by the leaf nodes of the DPST to a proile data

15

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3106237.3106254
https://doi.org/10.1145/3106237.3106254

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

Task

parallel

program

Parallelism

Profiler

Sufficient
parallelism

Program with
sufficient parallelism

or no optimization
opportunities

Insufficient
parallelism

Annotate code
regions to
optimize

No regions
to optimize

Causal

Profiler

Task parallel

program with

annotated

regions

Increase in

parallelism?

Design optimizations for the annotated regions

No

Yes

Parallelism

profile

Causal

profile

start

Figure 1: Identifying and diagnosing parallelism bottlenecks using TaskProf’s parallelism and causal proiles.

ile. The proile execution runs in parallel leveraging multi-cores

and the measurement of computation using performance counters

is thread-safe.

TaskProf’s post-execution analysis tool uses the data ile from

the proile run, reconstructs the DPST, and computes asymptotic

parallelism and critical work at each spawn site in the program

using the properties of the DPST (see Section 3.2). TaskProf maps

dynamic execution information to static spawn sites by maintaining

information about spawn sites in the DPST. TaskProf’s proile for

the sample program in Figure 2 is shown in Figure 3(b).

The spawn sites that perform a large fraction of the critical work

in the proile are the parallelism bottlenecks in the program. How-

ever, optimizing regions that perform critical workmay not increase

asymptotic parallelism when the program has multiple regions that

perform similar amount of critical work. Designing a paralleliza-

tion strategy that reduces critical work requires signiicant efort.

Hence, the programmer would like to know if optimizing a region

of code increases asymptotic parallelism even before the speciic

optimization is designed.

TaskProf provides a causal proile that estimates the improve-

ment in asymptotic parallelism when a speciic region of code in

the program is optimized even before concrete optimizations for

them are known. TaskProf’s causal proile is inspired by Coz [10],

which quantiies the speedup when a selected program fragment

is optimized in multithreaded programs by slowing down all code

executing concurrently with the fragment. However, Coz cannot

be used with task parallel programs as it is not possible to slow

down all active tasks.

In contrast, TaskProf is able to generate a causal proile because

it builds an accurate performance model of a task parallel execution

by performing ine-grained attribution of work to the nodes of the

DPST. To quantify the impact of optimizing a region of code, the

programmer annotates the beginning and the end of the region in

the program and the anticipated speedup for the region. TaskProf

generates a causal proile that shows the increase in parallelismwith

varying amounts of anticipated speedup for the annotated regions

(see Figure 3(c)). To generate a causal proile, TaskProf re-executes

the program, generates proile data, and identiies nodes in theDPST

that correspond to the annotated regions. Subsequently, TaskProf

recomputes the asymptotic parallelism in the program by reducing

the critical work of the annotated region of code by the anticipated

improvement. TaskProf’s causal proiling enables the programmer

to identify improvements in asymptotic parallelism even before

the developer actually designs the optimization. Figure 1 illustrates

TaskProf’s usage to generate a parallelism proile and a causal

proile.

TaskProf prototype is open source and available online [43].

We have identiied parallelism bottlenecks in twenty three Intel

TBB applications using the prototype. Using TaskProf’s causal

proile, we also designed concrete parallelization techniques for ive

applications to address the parallelism bottlenecks. Our concrete

optimizations increased parallelism in these ive applications by an

order of magnitude. We conducted a user study involving thirteen

undergraduate and graduate students to evaluate the usability of

TaskProf. Our results show that the participants quickly diagnosed

parallelism bottlenecks using TaskProf.

2 BACKGROUND

This section provides a quick primer on the tree-based represen-

tation of a task parallel execution, which is used by TaskProf to

compute parallelism and causal proiles.

Task parallelism. Task parallelism is a structured parallel pro-

gramming model that simpliies the job of writing performance

portable code. In this model, parallel programs are expressed us-

ing a small set of expressive yet structured patterns. In contrast to

threads, task creation is inexpensive and a task is typically bound

to the same thread till completion [32]. The runtime uses work

stealing to map dynamic tasks to runtime threads and balances the

workload between threads [16]. Task programming models provide

speciic constructs to create tasks (e.g., spawn keyword in Cilk and

spawn function in Intel TBB) and to wait for other tasks to com-

plete (e.g., sync keyword in Cilk and wait_for_all() function in

Intel TBB). A sample task parallel program is shown in Figure 2.

These models also provide patterns for recursive decomposition

of a program (e.g., parallel_for and parallel_reduce) that are

built using the basic constructs. Task parallelism is expressive and

widely applicable for writing structured parallel programs.

Dynamic program structure tree. The execution of a task par-

allel program can be represented as a dynamic program structure

tree (DPST), which precisely captures the series-parallel relation-

ships between tasks [36]. Further, the DPST can be constructed in

parallel. Since our goal in this paper is to proile the program in

parallel, we use the DPST representation of a task parallel execution.

The DPST is a n-ary tree representation of a task parallel execu-

tion. There are three kinds of nodes in a DPST: (1) step, (2) async,

and (3) finish nodes. The step node represents the sequence of

dynamic instructions without any task spawn or sync statements.

16

A Fast Causal Profiler for Task Parallel Programs ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

1 void compute_tree_sum(node* n, int* sum) {

2 if(n->num_nodes <= BASE) {

3 // Compute sum serially

4 __CAUSAL_BEGIN__

5 *sum = serial_tree_sum(n);

6 __CAUSAL_END__

7 } else {

8 int left_sum , right_sum;

9 if(n->left) {

10 spawn compute_tree_sum(n->left , &left_sum);

11 }

12 if(n->right) {

13 spawn compute_tree_sum(n->right , &right_sum);

14 }

15 sync;

16 *sum = left_sum + right_sum;

17 }

18 }

19 int main() {

20 __CAUSAL_BEGIN__

21 node* root = create_tree ();

22 __CAUSAL_END__

23 int sum;

24 spawn compute_tree_sum(root , &sum);

25 sync;

26 //print sum;

27 return 0;

28 }

Figure 2: A program that computes the sum of the nodes in

a binary tree. It creates tasks and waits for tasks to complete

using spawn and sync keywords, respectively. Each node in

the tree holds an integer value, number of nodes in the

sub-tree rooted at the node, and pointers to the left and

right sub-tree. The create_tree function builds the tree. The

serial_tree_sum takes a node n as argument and computes

the sum in the sub-tree under n. BASE is a constant that de-

termines the amount of serial work. The user has used an-

notations (__CAUSAL_BEGIN__ and __CAUSAL_END__) to specify

regions for causal proiling, which are not used in the regu-

lar proiling phase.

All computations occur in step nodes. The async node in the DPST

represents the creation of a child task by a parent task. The descen-

dants of the newly created task can execute in parallel with the

remainder of the parent task. A inish node is created in a DPST

when a task spawns a child task and waits for the child (and its

descendants) to complete. A inish node is the parent of all async,

inish, and step nodes directly executed by its children or their

descendants.

The DPST, by construction, ensures that two parallel tasks op-

erate on two disjoint sub-trees. DPST’s construction also ensures

that all internal nodes are either async or inish nodes. The siblings

of a particular node in a DPST are ordered left-to-right to relect

the left-to-right sequencing of computation of their parent task.

A path from a node to the root and the left-to-right ordering of

siblings in a DPST do not change even when nodes are added to the

DPST during execution. The DPST was originally used for data race

detection because it allows a race detector to check if two accesses

can occur in parallel [36, 44]. In a DPST, two step nodes S1 and S2

(assuming S1 is to the left of S2) can execute in parallel if the least

w cw ew

40 40 40

w

75

cw

45

ew

5

w
5

[<L13,40>,<L25,20>]

ss_listew

85

cw

145

w

175

[<L13,40>,<L25,20>]

[<L13,40>]

ss_list

[<L13,40>]

ss_list

F0

S0

F1

A1

A0

S5

S4 A2

S6

F2

S2

S3

S1

Line

number
ParallelismWork

L20

L25

L10

L13

1.21

1.5

1

1

175

90

30

40

Span

145

60

30

40

Optimization

factor
ParallelismWork

2X

4X

8X

2.06

3.18

4.38

175

175

175

Span

85

55

40

(a) DPST

(b) Parallelism profile (c) Causal profile

Critical path

percent

58.62

13.79

0

27.58

w

90

cw ew

0

ss_list

60

w
5

w
5

w
80

w
10

w
40

w
30

[<L13,40>,<L25,20>]

w

90

cw ew

0

ss_list

60

w cw ew

30 30 30 [<L10,30>]

ss_list

Figure 3: (a) The DPST for an execution of the program

in Figure 2. F0, F1, and F2 are inish nodes. A0, A1, and

A2 are async nodes. Step nodes are leaves in the DPST.

TaskProf maintains four quantities with each intermedi-

ate node in the DPST: work (w), critical work (cw), exclu-

sive work (ew), and the list of spawn sites performing crit-

ical work (ss_list). Each entry in the spawn site list main-

tains the line number and the exclusive work done by the

spawn site (e.g., < L20, 40 >). Step nodes have work data

from the proile execution. TaskProf updates these quanti-

ties for the intermediate nodes by performing a bottom-up

traversal of theDPST. (b) The proile generated byTaskProf

reports the work, critical work, parallelism, and percentage

of critical work with each spawn site. Line with a ł⋆ž in the

proile corresponds to themain function and reports the par-

allelism for the entire program. (c) The causal proile reports

the parallelism for the whole program when the annotated

regions in Figure 2 are optimized by 2×, 4×, and 8×.

common ancestor of S1 and S2 in the DPST has an immediate child

that is an async node and is also an ancestor of S1. In Section 3.2,

we will highlight the properties of the DPST that we use to proile

programs.

Illustration of the DPST. Figure 3(a) shows the DPST for an

execution of the program in Figure 2. The program in Figure 2 will

execute the spawn call at line 10 and line 13 once when BASE=n/2,

where n is the number of nodes in the tree.

We construct the DPST during program execution as follows.

When the main function starts, we add a inish node F0 as the root

of the DPST to represent the fact that main completes after all the

tasks spawned by it have completed. We add a step node S0 as the

child of the root inish node to capture the initial computations

being performed in the main function. On a spawn call at line 24

in Figure 2, we create a inish node F1 because it is the irst spawn

performed by the task. We also add an async node A0 as the child

of F1 to represent the spawning of a task. Any computation by the

17

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

newly created task will be added as nodes in the sub-tree under the

async node A0. The operations performed in the continuation of

the main task will be added to the right of the async node A0 under

the inish node F1. Hence, the continuation of the main task and

newly created task operate on distinct subtrees of the DPST and

can update the DPST in parallel.

3 PARALLELISM PROFILER

TaskProf computes the total work, part of the total work done

serially (critical work or span), and the asymptotic parallelism at

each spawn site in a task parallel program. The key contribution

of TaskProf is in ine-grained attribution of work while ensuring

that the proile execution is fast, perturbation-free, and accurate.

TaskProf accomplishes the goal of fast proile execution by using

multi-cores. TaskProf’s proile execution itself runs in parallel and

leverages the DPST representation to attribute work to various

parts of the program. TaskProf ensures that the proile execution

is perturbation-free by using hardware performance counters to

obtain information about the computation performed by the step

nodes in the DPST. TaskProf also maintains a very small fraction of

the DPST in memory during proile execution to further minimize

perturbation. TaskProf ensures that the parallelism proile is accu-

rate by capturing spawn sites through compiler instrumentation

and by precisely measuring work performed in each step node.

TaskProf computes the parallelism proile in three steps. First,

TaskProf provides a modiied library for task parallelism that cap-

tures information about spawn sites. TaskProf’s compiler instru-

mentation modiies the calls to the task parallel library in the pro-

gram to provide information about spawn sites. Second, TaskProf’s

proile execution runs in parallel on the multi-core processors,

constructs the DPST representation of the execution, and collects

ine-grained information about the execution using hardware per-

formance counters. TaskProf writes the proile information to a

data ile similar to the grof proiler for sequential programs [18].

Third, TaskProf’s oline analysis tool analyzes the proile data and

aggregates the data for each static spawn site. Finally, it computes

asymptotic parallelism and critical work for each spawn site.

Static instrumentation and modiied libraries. TaskProf

provides a modiied task parallelism library that constructs the

DPST and reads hardware performance counters at the beginning

and end of each step node. TaskProf uses static instrumentation

to instrument the program with calls to the modiied task parallel

runtime library. In the subsequent oline analysis phase, TaskProf

needs to map the dynamic execution information about asymptotic

parallelism and critical work to static spawn sites in the program.

Hence, TaskProf instruments the spawn sites to capture the line

number and the ile name of the spawn site. TaskProf’s static in-

strumentation is currently structured as a rewriter over the abstract

syntax tree of the program using the Clang compiler front-end. Our

instrumented libraries and compiler instrumentation enable the

programmer to use TaskProf without making any changes to the

source code.

3.1 Parallel Proile Execution

The goal of the proile execution is to collect ine-grained informa-

tion about the program to enable a subsequent oline computation

of asymptotic parallelism. Typically, programs are proiled with

representative production inputs that have long execution times.

Hence, a fast proile execution is desirable. Our goal is to ensure

that the execution time of the program with and without proiling

is similar. Hence, TaskProf proiles in parallel leveraging multi-

core processors. To ensure a parallel proile execution, it needs to

construct the execution graph in parallel and collect information

about the program in a thread-safe manner.

The DPST representation for parallel proile execution.

We use the DPST representation to measure work performed by

various parts of the program because the DPST can be constructed

in parallel. TaskProf constructs the DPST as the program exe-

cutes the injected static instrumentation and measures the work

performed in each step node. The DPST, once constructed, allows

TaskProf to determine the dependencies between tasks. This ine-

grained attribution of work to the step nodes in the DPST enables

TaskProf to compute the parallelism in the program eventually

using an oline analysis.

The DPST of the complete task parallel execution has a large

number of nodes. Storing the entire DPST in memory during pro-

gram execution can causememory overheads and perturb the execu-

tion. To address this issue, TaskProf does not maintain the entire

DPST in memory. In a library based task parallel programming

model, a task is always attached to the same thread. We leverage

this property to minimize the footprint of the DPST in memory.

TaskProf maintains a small fraction of the nodes that correspond

to the tasks currently executing on each thread in memory.

Once a step node of a task completes execution, the work per-

formed in the step node along with the information about its parent

node is written to the proile data ile and the DPST node can be

deallocated. As async nodes do not perform any work, TaskProf

writes the information about its parent in the DPST and the spawn

site associated with the async node to the proile data ile. In con-

trast to step and async nodes, only parent node information is

written to the proile data ile for a inish node.

Measuringworkwith hardware performance counters. To

measure the work performed in each step node without perfor-

mance overhead, TaskProf uses hardware performance counters.

Performance counters are model speciic registers available that

count various events performed by the hardware using precise

event-based sampling mechanisms [8]. These performance coun-

ters can be programmatically accessed. TaskProf can use both the

number of dynamic instructions and the number of execution cy-

cles to measure the work done in a step node. Measuring execution

cycles allows TaskProf to account for latencies due to secondary

efects such as locality, sharing, and long latency instructions. Fur-

ther, the operations on these counters are thread-safe. TaskProf

reads the value of the counter at the beginning and the end of the

step node using static instrumentation injected into the program.

It calculates the work performed in the step node by computing

diference between the two counter values. This ine-grained mea-

surement of work performed in each step node using hardware

performance counters along with the construction of the DPST

while executing in parallel allows TaskProf to compute a precise,

yet fast proile of the program.

18

A Fast Causal Profiler for Task Parallel Programs ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

The proile data ile generated at the end of parallel proile exe-

cution contains the work done in each step node. It also contains

the information about the parent for each node in the DPST and

the spawn site information for each async node. The left-to-right

sequencing of nodes is implicitly captured by the order of the nodes

in the proile data ile.

3.2 Ofline Analysis of the Proile Data

TaskProf’s oline analysis reconstructs the DPST using the data

from the proile execution and computes the work and critical work

(span) for each spawn site in the program. The construction of the

DPST from the proile data is fairly straightforward as it contains

information about nodes, their parent nodes, and the left-to-right

ordering of the nodes. In this section, we describe the computation

of work and span for each intermediate node in the DPST given

the work performed in the step nodes. We also describe the process

of mapping this dynamic information to static spawn sites.

Computing work and critical work for each intermediate

node. In the DPST representation, all computation is performed in

the step nodes. The step nodes have ine-grained work information

from the proile execution. TaskProf needs to compute the total

work and the fraction of that work done serially (critical work)

for each intermediate node in the DPST. To provide meaningful

feedback to the programmer, TaskProf also computes the list of

spawn sites that perform critical work and the portion of the critical

work performed exclusively by each spawn site.

TaskProf computes the total work and the critical work at each

intermediate node by performing a bottom-up traversal of the DPST.

The total work performed in the sub-tree at each intermediate node

is sum of the work performed by all the step nodes in the sub-tree.

In contrast, critical work measures the amount of work that is

performed serially. Computing critical work and the set of tasks

performing the critical work requires us to leverage the properties

of the DPST. Speciically, we leverage the following properties of

the DPST to compute the critical work.

• The siblings of a node in a DPST are ordered left-to-right

relecting the left-to-right sequencing in the parent task.

• Given an intermediate node, all the direct step children of

the node execute serially.

• All the left step or inish siblings of an async node execute

serially with the descendants of the async node.

• All the right siblings (and their descendants) of an async

node execute in parallel with the descendants of the async

node.

Using the above properties of the DPST, the critical work at an

intermediate node will be equal to either (1) the serial work done by

all the direct step children and the critical work performed by the

inish children or (2) the critical work performed by descendants of

an async child and the serial work performed by the left step and

inish siblings of the speciic async child in consideration. Since any

intermediate node in the DPST can have multiple async children,

TaskProf needs to check if any of the async nodes can contribute

to the critical work. For example, consider the intermediate node

F2 in Figure 3(a) that has two async nodes A1 and A2. The critical

work will be the maximum of (1) the work done by the direct step

child S4 or (2) the critical work by the async child A1 (it does not

1: function ComputeWorkSpan(T)

2: for each non-step node N in bottom-up traversal of T do

3: CN ← Children(N)

4: N .work ←
∑

C ∈CN

C .work

5: SN ← StepChildren(N)

6: FN ← FinishChildren(N)

7: N .c_work ←
∑

S ∈SN

S .work +

∑

F ∈FN

F .c_work

8: N .e_work ←
∑

S ∈SN

S .work +

∑

F ∈FN

F .e_work

9: N .ss_list ←
⋃

F ∈FN

F .ss_list

10: for each A ∈ AsyncChildren(N) do

11: LSA ← LeftStepSiblings(A)

12: LFA ← LeftFinishSiblings(A)

13: llwA ←
∑

LS ∈LSA

LS .work +

∑

LF ∈LFA

LF .c_work

14: if llwA +A.c_work > N .c_work then

15: N .c_work ← llwA +A.c_work

16: N .e_work ←
∑

S ∈LSA

S .work +

∑

F ∈LFA

F .e_work

17: N .ss_list ← (
⋃

LF ∈LFA

LF .ss_list) ∪A.ss_list

18: end if

19: end for

20: if N is a async node then

21: N .ss_list ← N .ss_list ∪ ⟨N .s_site,N .e_work⟩

22: end if

23: end for

24: end function

Figure 4: Algorithm to compute the total work (work), crit-

ical work (c_work), exclusive work (e_work), and the spawn

sites that perform the critical work (ss_list) for each inter-

mediate node in the DPST. The function Children returns

the set of children of the input node. Similarly, functions

StepChildren, FinishChildren, andAsyncChildren re-

turn the set of step, finish, and async child nodes of the in-

put node, respectively. The function LeftStepSiblings re-

turns the set of step sibling nodes that occur to the left of

the input node in the DPST. Similarly, the LeftFinishSib-

lings returns the set of finish sibling nodes to the left of

the input node in the DPST.

have any left siblings), or (3) the sum of the critical work by the

async child A2 and the work done by the step node S4, which is the

left step sibling of A2.

Each async node in the DPST corresponds to a spawn site in

the program because async nodes are created when a new task

is spawned. Hence, TaskProf computes the list of spawn sites

performing critical work by computing the list of async nodes that

contribute to the critical work in the sub-tree of the intermediate

node.

Algorithm to compute work and critical work. Figure 4 pro-

vides the algorithm used by TaskProf to compute the total work,

19

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

the critical work, and the set of spawn sites contributing to the

critical work. The algorithm maintains four quantities with each

intermediate node in the DPST: (1) total work performed in the

sub-tree under the node (work), (2) the critical work performed

in the sub-tree (c_work), (3) the list of spawn sites that perform

the critical work (ss_list), and (4) the part of the critical work

that is performed exclusively by the direct children of the node

(e_work). The exclusive work of a node is equal to sum total of

the work performed by the direct step children and the exclusive

work performed by the inish children. We consider the exclusive

work performed by a inish node because it is not yet associated

with any spawn site. The exclusive work of the current node will

eventually be associated with a spawn site. The algorithm does

not consider the exclusive work of the async children because it is

already associated with a spawn site.

The algorithm traverses each node in the DPST in a bottom-up

fashion. All step nodes have work information from the proile data.

For any intermediate node, the work performed under the sub-tree

is the sum of the work performed by all its children (lines 3-4 in

Figure 4). For a given intermediate node, TaskProf initially com-

putes the serial work performed in all the step and inish children

as the critical work (lines 5-7 in Figure 4). For each async child of

the current node, it checks if the serial work done by the async

node and its left siblings is greater than the critical work computed

until that point (lines 10-15 in Figure 4).

To compute the set of spawn sites performing critical work,

each intermediate node also maintains a list of spawn sites and

the exclusive work performed by them. The algorithm initially sets

the spawn site list for a node to be the union of spawn site lists of

its inish children (lines 8-9 in Figure 4). Whenever an async child

contributes to the critical work, the spawn site list of the current

node is the union of the spawn site list of the async child and the

spawn site lists of the inish children that are to the left of the async

child (line 17 in Figure 4). When an async child contributes to the

critical work, the exclusive work of the current node is equal to sum

of the work performed by the left step siblings and the exclusive

work performed by the left inish siblings of the async child (line 16

in Figure 4). The algorithm adds the spawn site and the exclusive

work performed by the current async node to the node’s spawn

site list (lines 20-22 in Figure 4).

After the algorithm completes traversing the entire DPST, the

root of the DPST will contain the list of all spawn sites that per-

form critical work and their individual contribution to the critical

work. The root node also contains information about the total work

performed by the program, the work that is computed serially by

the program, and the exclusive work performed under the entry

function of the program (i.e., main).

Aggregating information about a spawn site.A single spawn

site may be executed multiple times in a dynamic execution. Hence,

TaskProf aggregates information from multiple invocations of the

same spawn site. TaskProf computes the aggregate information

for each spawn site by performing another bottom-up traversal of

the DPST at the end. When it encounters an async node, TaskProf

uses a hash table indexed by the spawn site associated with the

async node and adds the total work and critical work to the entry.

When aggregating this information, TaskProf has to ensure that

it does not double count work and critical work when recursive

calls are executed. In the presence of recursive calls, a descendant

of an async node will have the same spawn site information as the

async node. If we naively add the descendant’s work, it leads to

double counting as the work and critical work of the current async

node already considers the work/critical work of the descendant

async node. Hence, when TaskProf encounters an async node in a

bottom-up traversal of the DPST, it checks whether the descendants

of the async node have the same spawn site information. When

a descendant with the same spawn site exists, it subtracts such a

descendant’s work and critical work from the entry in the hash

table corresponding to the spawn site. Subsequently, TaskProf

adds the work and the critical work of the current async node to

the hash table.

Proile reported to the user. For each spawn site in the pro-

gram, TaskProf presents the work, the critical work, the asymp-

totic parallelism, and the percentage of critical work exclusively

done by the spawn site. The asymptotic parallelism of a spawn site

is the ratio of the total work and the critical work performed by

a spawn site. The spawn sites are ordered by the percentage of

critical work exclusively performed by the spawn site. Figure 3(b)

illustrates the parallelism proile for the program in Figure 2 that

has the DPST shown in Figure 3(a). If a spawn site has low paral-

lelism and performs a signiicant proportion of the critical work,

then optimizing the task spawned by the spawn site may increase

the parallelism in the program. This proile information provides a

succinct description of the parallelism bottlenecks in the program.

4 CAUSAL PROFILING

TaskProf reports the set of spawn sites performing critical work

to the user, which highlight the parallelism bottlenecks in the pro-

gram. A programmer can consider these spawn sites to be initial

candidates for optimization to reduce serial computation.

Reducing critical work and the impact on parallelism. De-

signing a new optimization or a parallelization strategy that reduces

the critical work typically requires efort and time. A program may

have multiple spawn sites that perform similar amount of critical

work. When a set of spawn sites are parallelized to reduce critical

work, the resultant execution may have new spawn sites whose

critical work is similar to the critical work before the optimization.

In such cases, an optimization to a spawn site performing critical

work may not improve the asymptotic parallelism in the program.

Hence, programmers would beneit from a causal proile of program

that identiies the improvement in asymptotic parallelism when

certain regions of the code are optimized.

Causal proile with TaskProf. A causal proile provides in-

formation on improvements in parallelism when certain parts of the

code are parallelized or optimized. TaskProf proposes a technique

to generate causal proiles for task parallel programs. The program-

mer can get an accurate estimate of the improvement in asymptotic

parallelism by reducing the serial work in a region of the program

using TaskProf’s causal proile. TaskProf provides such an esti-

mate even before the programmer has designed a concrete strategy

to parallelize or reduce the serial work in the region of code under

consideration. In summary, a causal proile enables the programmer

20

A Fast Causal Profiler for Task Parallel Programs ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

to identify parts of the program that really matter in increasing the

asymptotic parallelism. Figure 3(c) provides the causal proile for

the program in Figure 2 where the regions under consideration are

demarcated by __CAUSAL_BE’IN__ and __CAUSAL_END__. Next, we

describe how TaskProf generates a causal proile leveraging the

accurate performance model of a task parallel execution created

with the ine-grained attribution of work and the DPST.

Static code annotations. To generate causal proiles, the pro-

grammer annotates a static region of code that is considered for

parallelization and the expected improvement to the critical work

from parallelization. The programmer can provide multiple regions

as candidates for optimization. TaskProf generates a causal pro-

ile that estimates the improvement in parallelism when all anno-

tated regions are optimized. In addition, TaskProf also generates

a causal proile for optimizing each region in isolation. Figure 2

illustrates the regions of code annotated for causal proiling with

__CAUSAL_BE’IN__ and __CAUSAL_END__ annotations. If the pro-

grammer does not specify the amount of expected improvement

for the considered region, TaskProf assumes a default value. If the

annotations are nested, the outermost region of code is considered

for estimating the beneits.

Proile execution and attribution of work. TaskProf uses

these annotations, proiles the program, constructs the DPST to

attribute work to various regions, and provides the estimated im-

provement in asymptotic parallelism from optimizing the annotated

regions. During proile execution, TaskProf measures the work

performed in the annotated part of the step node and also in parts

of the step node that have not been annotated. Hence, each step

node can have multiple work measurements corresponding to static

regions with and without annotation. TaskProf accomplishes it by

reading the performance counter value at the beginning and the

end of the each dynamic region. TaskProf maintains a list of work

values for each step node and writes it to the proile data ile.

Algorithm to generate causal proiles. The algorithm to com-

pute the causal proile is similar to the work and span algorithm

in Figure 4. It takes the DPST as input and a list of anticipated

improvements for the annotated regions. The algorithm outputs a

causal proile that computes the improvement in asymptotic paral-

lelism of the whole program for the speciied improvements of the

annotated regions. The causal proile algorithm performs a bottom-

up traversal of the DPST similar to the work and span algorithm

in Figure 4. However, the causal proiling algorithm does not track

spawn sites and computes the whole program’s work and critical

work. The key diference with the causal proiling algorithm is

the manner in which it handles the work done by the step nodes,

which have regions corresponding to user annotations. Speciically,

TaskProf maintains a list of annotated and non-annotated regions

executed with each step node and the amount of work performed

in each region. To estimate the efect of optimizing/parallelizing the

annotated region, we reduce the critical work contribution of the

annotated region by the user-speciied optimization factor while

keeping the total work performed by the regions unchanged. The

output of the causal proiling algorithm is a list that provides the

asymptotic parallelism for each anticipated improvement factor for

the regions under consideration.

Illustration. After analyzing the parallelism proile in Fig-

ure 3(b) for the program in Figure 2, the programmer has identiied

two regions of code (lines 4-6 and lines 20-22 in Figure 2) for opti-

mization. The regions are annotated with __CAUSAL_BE’IN__ and

__CAUSAL_END__ annotations to demarcate the beginning and the

end. During execution, the region at lines 20-22 is executed once

and is represented by step node S0 in Figure 3(a). In contrast, the

region at lines 4-6 is executed twice and is represented by step

nodes S5 and S6 in Figure 3(a). In this example, the entire step

node corresponds to the annotated region. In general, a step node

may have multiple annotated and non-annotated regions. To gen-

erate a causal proile, the critical work performed by nodes S0, S5,

and S6 are decreased by 2×, 4×, and 8× and its impact on whole

program parallelism is computed. Figure 3(c) provides the causal

proile with the annotated regions, which reports that the asymp-

totic parallelism in the program increases when those two regions

are optimized.

5 EXPERIMENTAL EVALUATION

This section describes our prototype, our experimental setup, and

an experimental evaluation to answer the following questions: (1) Is

TaskProf efective in identifying parallelism bottlenecks? (2) Is

TaskProf’s parallel proile execution faster than serial proilers?

(3) Is TaskProf efective in minimizing perturbation in the proile

execution? (4) Is TaskProf usable by programmers?

Prototype. We have built a TaskProf prototype to proile task

parallel programs using the Intel Threading Building Blocks(TBB)

library [37]. The prototype provides a TBB library that has been

modiied to construct the DPST, measure work done in step nodes

using hardware performance counters, and track ile name and

line information at each spawn site. The prototype also handles

algorithms for geometric decomposition such as parallel_for and

parallel_reduce. The prototype also includes a Clang compiler

pass that automatically adds line number and ile name information

to the TBB library calls, which enables the programmer to use

the modiied library without making any source code changes.

Hence, the modiied TBB library can be linked to any TBB program.

Our prototype adds approximately 2000 lines of code to the Intel

TBB library to perform various proiling operations. The TaskProf

prototype is open source [43].

Applications used for evaluation. We evaluated TaskProf

using a collection of twenty three TBB applications, which in-

clude ifteen applications from the problem based benchmark suite

(PBBS) [39], all ive TBB applications from the PARSEC suite [4], and

three TBB applications from the structured parallel programming

book [32]. The PBBS applications are designed to compare difer-

ent parallel programming methodologies in terms of performance

and code. We conducted all experiments on a 2.1GHz 16-core Intel

x86-64 Xeon server with 64 GB of memory running 64-bit Ubuntu

14.04.3. We measured wall clock execution time by running each

application ive times and use the mean of the ive executions to

report performance. We use the perf events module in Linux to

programmatically access hardware performance counters.

RQ1: Is TaskProf efective in identifying parallelism bot-

tlenecks?We used TaskProf to identify parallelism bottlenecks in

21

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

Table 1: Applications used to evaluate TaskProf. We pro-

vide a short description of the application, the speedup ob-

tained on a 16-core machine when compared to serial execu-

tion time, the asymptotic parallelism reported byTaskProf,

the number of annotated regions that provides maximum

parallelism with causal proiling, and the asymptotic paral-

lelismwhen the critical work in the annotated regions is op-

timized by 100×, which we list as causal parallelism.

Application Description Speedup Parallel-

ism

of

regions

Causal

parallelism

blackscholes Stock option pricing 1.09 1.14 2 59.24

bodytrack Tracking of a human body 5.96 22.19 1 40.32

luidanimate Simulate luid dynamics 9.39 66.09 1 90.20

streamcluster Clustering algorithm 7.30 55.13 2 198.93

swaptions Price a portfolio 8.59 73.45 1 98.73

convexHull Convex hull 1.30 1.28 4 112.17

delReine Delaunay Reinement 2.93 5.50 7 61.28

delTriang Delaunay triangulation 1.23 1.47 5 78.85

karatsuba Karatsuba multiplication 5.22 23.69 1 36.90

kmeans K-means clustering 2.54 4.18 6 69.60

nearestNeigh K-nearest neighbors 4.54 12.41 2 30.55

rayCast Triangle intersection 6.62 48.49 2 68.52

sort Parallel quicksort 3.91 6.33 2 45.04

compSort Generic sort 4.99 38.97 4 86.23

intSort Sort key-value pairs 4.71 48.68 2 75.02

removeDup Remove duplicate value 6.04 54.91 3 98.24

dictionary Batch dictionary opers 5.13 38.10 4 73.12

suixArray Sequence of suixes 3.75 5.50 1 28.53

bFirstSearch Breadth irst search 6.60 22.45 5 60.55

maxIndSet Maximal Independent Set 5.48 16.46 5 52.23

maxMatching Maximal matching 6.73 46.04 0 46.04

minSpanForest Minimum spanning forest 3.47 7.99 2 49.78

spanForest Spanning tree or forest 7.46 44.04 1 58.91

all the twenty three applications. Table 1 provides details on appli-

cations used, their speedup on a 16-core machine compared to serial

execution, the asymptotic parallelism reported by TaskProf, the

number of regions that we identiied using TaskProf to increase as-

ymptotic parallelism, and the resultant asymptotic parallelism from

causal proiling when the critical work in the identiied regions is

decreased by 100×. Typically, asymptotic parallelism of a program

should be at least 10× or more than the anticipated speedup on a

machine to account for scheduling overheads [16, 37, 38].

TaskProf’s proile shows that some applications in Table 1 have

reasonable asymptotic parallelism, which accounts for a reasonable

speedup on a 16-core machine. For example, fluidanimate applica-

tion has an asymptotic parallelism of 66.09 which is the maximum

possible speedup when the program is executed on a large number

of machines. The fluidanimate application exhibits a speedup

of 9.39× compared to a serial execution when the program was

executed on a 16-core machine.

Table 1 also shows that wewere able to identify a small number of

code regionswhichwhen optimized provide a signiicant increase in

asymptotic parallelism. TaskProf’s proile information on spawn

sites performing critical work and the causal proiling strategy

was instrumental in identifying the speciic regions of code as

candidates for increasing asymptotic parallelism. The application

maxMatching already had a large amount of asymptotic parallelism

and we could not ind any region that increases parallelism.

In summary, TaskProf enabled us to identify a set of code re-

gions that can increase asymptotic parallelism signiicantly in al-

most all our applications. Once we identiied code regions that

Critical path
percent

refineTime.C:59refine.C:249 55.3 4.84

66.26

hullTime.C:55

Parallel
-ism

7.99

51.79

58.69

42.11

Optimization
factor

Parallel
-ism

50X

200X

400X

47.28

51.14

51.84

Critical path
percent

85.97

2.64

1.52

3.68

MSTTime.C:77

spec_for.h:82

IO.h:71

graphIO.h:167 100X 49.78

Parallel
-ism

33.34

51.54

52.28

42.87

Critical path
percent

33.73

9.45

8.48

14.58

File:Line

MSTTime.C:77

spec_for.h:82

sampleSort.h:81

graphIO.h:167

I. Minimum spanning forest

1.28

2.47

1.2

1.33

60.3

196.82

316.06

80.66

5.75

2.67

10.3

hullTime.C:46

hull.C:117

hull.C:209 112.17 50.84

41.97

55.46

52.71

18.93

17.06

16.15

25.82

hullTime.C:55

sequence.h:359

IO.h:71

geoIO.h:96

5.5

54.25

49.82

55.68

64.51

91.47

1.73

0.24

refineTime.C:59

refine.C:260

topFromT.C:126

61.27 48.08

58.42

62.48

56.83

16.5

14.37

6.64

25.22

refine.C:257

sequence.h:365

refine.C:246

File:Line

File:Line
Parallel

-ism
Parallel

-ism

50X

200X

400X

100X

Parallel
-ism

Critical path
percent

File:Line

Parallel
-ism

(a) Original parallelism profile (b) Causal profile (c) Parallelism profile after optimization

Optimization
factor

(a) Original parallelism profile (b) Causal profile (c) Parallelism profile after optimization

II. Convex hull

File:Line
Parallel

-ism

50X

200X

400X

100X

Optimization
factor

Parallel
-ism

Critical path
percent

File:Line

IV. Delaunay refinement

(a) Original parallelism profile (b) Causal profile (c) Parallelism profile after optimization

Critical path
percent

Critical path
percent

delTime.C:55

geoIO.h:96 58.28 0.09

111.33

1.47

56.51

71.41

63.55

96.4

99.12

0.07

0.07

delTime.C:55

delaunay.C:385

IO.h:164

78.45

53.11

58.65

51.78

57.93

3.93

5.99

5.42

47.46

sequence.h:365

IO.h:179

delaunay.C:284

Parallel
-ism

File:Line
Parallel

-ism

50X

200X

400X

100X

Optimization
factor

Parallel
-ism

Critical path
percent

File:Line

III. Delaunay triangulation

(a) Original parallelism profile (b) Causal profile (c) Parallelism profile after optimization

Critical path
percent

bscholes.c:464
bscholes.c:274 51.2 0.28

96.52

1.14 39.1

79.78

99.72bscholes.c:323

59.24

40.03

1

48.44

1

21.71

22.75

9

46.52

bscholes.c:212

bscholes.c:415

bscholes.c:145

Parallel
-ism

File:Line
Parallel

-ism

50X

200X

400X

100X

Optimization
factor

Parallel
-ism

Critical path
percent

File:Line

V. Blackscholes

(a) Original parallelism profile (b) Causal profile (c) Parallelism profile after optimization

Figure 5: The original parallelism proile, the causal pro-

ile for the annotated regions, and inal parallelism proile

generated by TaskProf after annotated regions were paral-

lelized for each of the ive applications. We list the top four

spawn sites from TaskProf’s parallelism proile. Line with

a ł⋆ž in the proile corresponds to the main function and

reports the parallelism for the entire program.

can increase asymptotic parallelism, we designed concrete paral-

lelization strategies to reduce the critical work for ive applications,

which increased the asymptotic parallelism and the speedup of the

program. We describe them below.

Improving the speedup of the MinSpanningForest appli-

cation. This PBBS application computes the minimum spanning

forest of the input undirected graph. The program has a speedup

of 3.47× over serial execution on a 16-core machine. The paral-

lelism proile generated by TaskProf is shown in Figure 5(I)(a),

which reports that the parallelism in the program (main function

at MSTTime.C:77) is 7.99. The main function performs 85% of the

serial work in the program. We identiied two regions of code using

annotations for causal proiling in the main function. Figure 5(I)(b)

presents the causal proile generated by TaskProf, which shows

22

A Fast Causal Profiler for Task Parallel Programs ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

the increase in asymptotic parallelism in the program on poten-

tially optimizing these two regions. On further investigation of the

code regions, we realized that annotated regions were performing a

serial sort. We replaced them with a parallel sort function, which in-

creased the asymptotic parallelism to 33.34 from 7.99. Figure 5(I)(c)

reports the proile after our parallel sort optimization. The speedup

of the program increased from 3.49× to 6.37×.

Improving the speedup of the Convex Hull application.

This PBBS application computes the convex hull of a set of points

using a divide and conquer approach [3]. TaskProf’s proile shown

in Figure 5(II)(a) reveals that the program has an asymptotic paral-

lelism of 1.28 for the whole program. As expected, it did not exhibit

any speedup. Figure 5(II)(a) shows that 80% of the critical work

is performed by the spawn site at hullTime.C:55. We annotated

two regions corresponding to that spawn site, which performed

sequential read and write operations of the input and output iles re-

spectively. TaskProf’s causal proile showed that it would increase

the parallelism to 6.85. Subsequently, we annotated two additional

regions of code corresponding to the spawn site performing the next

highest critical work (hull.C:209) in Figure 5(II)(a). The causal

proile shown in Figure 5(II)(b) shows that asymptotic parallelism

increases signiicantly when all the four regions are optimized. We

parallelized a loop at spawn site hull.C:209 using parallel_for

and parallelized I/O at spawn site hullTime.C:55. These optimiza-

tions increased the parallelism to 50.84 (see Figure 5(II)(c)) and the

speedup of the whole program increased from 1.3× to 8.14×.

Improving the speedup of Delaunay Triangulation. This

PBBS application produces a triangulation given a set of points

such that no point lies in the circumcircle of the triangle. The pro-

gram has an asymptotic parallelism of 1.47 (see Figure 5(III)(a)) for

the entire program and exhibits little speedup. The spawn site at

delTime.C:55 performs 99% of the critical work. When we looked

at the source code, we found that the program is structured as

a collection of parallel_for constructs interspersed by serial

code. We annotated ive regions of code between the invocations

of parallel_for. The causal proile in Figure 5(III)(b)) shows that

the asymptotic parallelism increases signiicantly by optimizing the

annotated regions. We parallelized the annotated regions, which

had serial for loops, using parallel_for while ensuring they op-

erate on independent data. The proile for the resultant program

is shown in Figure 5(III)(c). The parallelism increased to 53.11 and

the speedup increased from 1.23× to 5.82×.

Improving the speedupofDelaunayReinement.This PBBS

application takes a set of triangles that form a delaunay triangula-

tion and produces a new triangulation such that no triangle has an

angle less than a threshold value. TaskProf’s proile for this pro-

gram reports an asymptotic parallelism of 5.5 (see Figure 5(IV)(a))

and it had a speedup of 2.93×. Similar to delaunay triangulation,

this program also had a set of serial code fragments in-between

parallel_for calls. We identiied seven regions of such serial

code and annotated them. TaskProf’s causal proile shown in Fig-

ure 5(IV)(b) indicates that optimizing all these seven regions can

increase asymptotic parallelism. We parallelized the serial for loops

in these seven regions using parallel_for, which increased the

0X

5X

10X

S
p
ee
d
u
p

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

flu
id
an
im
at
e

str
ea
m
cl
us
te
r

sw
ap
tio
ns

co
nv
ex
H
ul
l

de
lR
ef
in
e

de
lT
ria
ng

ka
ra
tsu
ba

km
ea
ns

ne
ar
es
tN
ei
gh

ra
yC
as
t
so
rt

co
m
pS
or
t

in
tS
or
t

re
m
ov
eD
up

di
ct
io
na
ry

su
ffi
xA
rra
y

bF
irs
tS
ea
rc
h

m
ax
In
dS
et

m
ax
M
at
ch
in
g

m
in
Sp
an
Fo
re
st

sp
an
Fo
re
st

ge
om
ea
n

Figure 6: Speedup of TaskProf’s parallel proile execution

when compared to serial proile execution.

asymptotic parallelism to 48.08 (see Figure 5(IV)(c)) and the speedup

increased from 2.93× to 6.42×.

Improving the speedup of Blackscholes. This application

from the PARSEC suite [4] computes the price of a portfolio of

options using partial diferential equations. It has low asymptotic

parallelism for the entire program (see Figure 5(V)(a)). This program

has a single parallel_for that has reasonable parallelism of 51.2.

However, the spawn site at bscholes.c:323 is performing 99% of

the program critical work. Our examination of the code revealed

that it was reading and writing serially. We split the input and out-

put into multiple iles and parallelized the input/output operations

which increased the parallelism to 40.03 and the speedup increased

from 1.09× to 7.7×.

In summary, TaskProf enabled us to quantify asymptotic paral-

lelism in the program and its causal proiling strategy enabled us

to identify speciic regions of code that can increase parallelism.

RQ2: Is TaskProf’s parallel proile execution faster than

serial proile execution? TaskProf’s proile execution executes

in parallel compared to prior proilers [38], which execute serially.

To quantify the beneits of parallel proile execution, we designed a

serial version of TaskProf by pinning the execution of the program

to a single core. This is an approximation of serial proiling as

TBB programs do not have serial semantics. Figure 6 reports the

speedup of a parallel TaskProf proile execution compared to a

serial proile execution. On average, TaskProf’s parallel proile

execution is 4.32× faster than serial proile execution. The speedup

from a parallel proile execution is proportional to the amount of

parallelism in the application.

RQ3: Is TaskProf efective in minimizing perturbation

in the proile execution? TaskProf uses hardware performance

counters to perform ine-grain attribution of work and to minimize

perturbation. The average performance overhead of TaskProf’s

proile execution compared to the parallel execution of the program

without any proiling instrumentation is 56%. A major fraction

of this performance overhead is attributed to system calls to read

hardware performance counters. TaskProf’s proile execution is an

order of magnitude faster than instrumenting each dynamic instruc-

tion through compiler instrumentation, which exhibited overheads

of 20×-100× for the applications in Table 1. Hence, TaskProf mini-

mizes perturbation even with ine-grained attribution of work.

RQ4: Is TaskProf usable by programmers? We conducted

a user study to evaluate the usability of TaskProf. The user study

had thirteen participants: twelve graduate students and one senior

undergraduate student. Among them, two students had 4+ years

23

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

of experience in parallel programming, ive students had some

prior experience, four students had passing knowledge, and two

students had no prior experience with parallel programming. The

total duration of the user study was four hours. To ensure that every

student had some knowledge in parallel programming, we provided

a 2-hour tutorial on task parallelism, and on writing and debugging

task parallel programs using Intel TBB. We gave multiple examples

to demonstrate parallelism bottlenecks.

After the tutorial, the participants were given a total of four

applications and were asked to identify parallelism bottlenecks

without using TaskProf in a one hour time period. Among them,

three applications Ð minSpanForest, convexHull, and blackscholes

Ð were from Table 1 and a treesum application was similar to the

example in Figure 2. We chose these applications as they had vary-

ing levels of diiculty in diagnosing parallelism bottlenecks. We

asked the participants to identify the static region of code causing

the bottleneck and record the time they spent to analyze each pro-

gram. They were not required to design any optimization. Some

participants used gprof and others used ine-grained wall clock

based timing for assistance. At the end of the time period, twelve

of them did not correctly identify parallelism bottlenecks in any

of the four applications. One participant, who had 4+ years of ex-

perience in parallel programming, identiied the bottleneck in one

(minSpanForest) application.

Subsequently after the irst part, we gave a brief tutorial of

TaskProf on a simple example program. The participants were

then asked to identify bottlenecks in the four applications using

TaskProf within an hour. Using TaskProf, seven participants

found the parallelism bottleneck in all the four applications, one

participant found the bottleneck in three of them, four participant

found the bottleneck in two of them, and one participant did not

ind the bottleneck in any application. Among the participants who

identiied at least one bottleneck for any application, it took them

12 minutes on average per application to identify the bottleneck

using TaskProf. The participants indicated that once they became

familiar with the tool by identifying a bottleneck in one application,

subsequent tasks were repetitive. In summary, our user study sug-

gests that programmers can quickly identify parallelism bottlenecks

using TaskProf.

Threats to validity. Our user study uses a repeated-measures

experiment, which can introduce order efects. Students had an

opportunity to study the code and attempt to optimize it during

the irst phase before they were given TaskProf.

6 RELATED WORK

There is a large body of work to identify parallelism bottlenecks.

These include techniques to address load imbalances [12, 24, 34, 40],

scalability bottlenecks [31, 38, 41], visualizing bottlenecks [13ś

15, 25], synchronization bottlenecks [7, 11, 45], and data locality bot-

tlenecks [1, 28, 30]. Data locality and synchronization bottlenecks

increase serial work. Hence, TaskProf will report asymptotic par-

allelism in their presence. In contrast to prior proposals, TaskProf

also estimates the improvement in parallelism with causal proiling.

Next, we focus on the closest related work.

Proiling tools for task parallel programs. Proiling tools

such as HPCToolkit [2], and Intel VTune Ampliier [9] can analyze

a program’s performance on various parameters using hardware

performance counters. HPCToolKit also has metrics to quantify

idleness and the scheduling overhead [41] in Cilk programs that is

speciic to a machine. They do not compute the asymptotic paral-

lelism in the program. They also do not identify code that matters

with respect to asymptotic parallelism. CilkView [21] computes

the whole program asymptotic parallelism. CilkProf [38] computes

asymptotic parallelism per spawn site using an online algorithm.

However, these proilers execute the program serially, which is only

possible with Cilk programs with C-elision [16]. Many task paral-

lelism frameworks including Intel TBB do not have serial semantics,

which limits their use. Further, executing the proiler serially can

cause high overheads. Unlike TaskProf, they also cannot estimate

the beneits of optimizing speciic regions of code.

Performance estimation tools. An early proiling technique

proposed Slack [22], which is a metric that estimates the improve-

ment in execution time through critical path optimizations for a

speciic machine model. Kremlin [17] identiies regions of code

that can be parallelized in serial programs by tracking loops and

identifying dependencies between iterations. Kismet [23] builds on

Kremlin to estimate speedups for the speciic machine on which the

serial program is executed. These techniques are tied to a speciic

machine and cannot estimate asymptotic parallelism improvements.

Our work is inspired by Coz [10], a causal proiler for multi-

threaded programs that automatically identiies optimization op-

portunities and quantiies their impact on a metric of interest, such

as latency or throughput. It runs periodic experiments at runtime

that virtually speed up a single randomly selected program frag-

ment. Virtual speedups produce the same efect as real speedups

by uniformly slowing down code executing concurrently with the

fragment, causing the fragment to run relatively faster. In a task

parallel context, it is not possible to slow down all active tasks.

Further, slowing down threads does not measure the impact of

the region as work stealing dynamically balances the load. Fur-

ther, Coz’s virtual speedups are speciic to a particular machine.

TaskProf, though similar in spirit, addresses the above challenges

and proposes a causal proiler that leverages the dynamic execution

structure and estimates improvements in asymptotic parallelism.

Hence, TaskProf’s proile is not speciic to a single machine and

enables the development of performance portable code.

7 CONCLUSION

TaskProf identiies parallelism bottlenecks by performing a low-

overhead, yet ine-grained attribution of work to various parts of

the program using the dynamic execution structure of a task parallel

execution. TaskProf reports asymptotic parallelism and serial work

performed at each spawn site. TaskProf’s causal proile estimates

the improvements in parallelism when regions of code annotated

by the programmer are optimized. We have identiied bottlenecks

and improved the speedup in numerous Intel TBB applications. Our

user study shows that developers can quickly identify parallelism

bottlenecks using TaskProf.

A ARTIFACT DESCRIPTION

The TaskProf prototype is open source and is publicly available at

https://github.com/rutgers-apl/TaskProf. The artifact contains the

24

https://github.com/rutgers-apl/TaskProf

A Fast Causal Profiler for Task Parallel Programs ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

following folders: (1) ptprof_lib contains the implementation of

the proiler for Intel TBB programs, (2) tprof-tbb-lib contains the

modiied Intel TBB library, and (3) tests contains simple programs

used to illustrate TaskProf’s usage. In addition, we also separately

provide applications that we used to evaluate TaskProf.

A.1 Setup

Requirements. TaskProf must be executed on a modern Linux

machine that supports hardware performance counters. The fol-

lowing command can be used to check if hardware performance

counters are supported on the machine.

$ dmesg | grep PMU

When the output of the command contains łPerformance Events:

Unsupported...ž, then the machine does not support performance

counters. TaskProf will not be functional on such a machine.

TaskProf uses the perf events module in Linux to read per-

formance counters. To check the support for perf events on the

machine, users can check the existence of perf_event_paranoid

ile in the /proc/sys/kernel/ folder:

$ ls /proc/sys/kernel/perf_event_paranoid

Installation. The artifact contains a bash script to automate

the installation of TaskProf and the modiied TBB library. The

script uses perf command line utility in Linux to check if hardware

performance counters are supported. To install perf on a Ubuntu

Linux machine, execute the following command:

$ sudo apt-get install linux-tools-common

linux-tools-generic linux-tools-`uname -r`

Let < TP_ROOT > refer to the base directory of the artifact. To

install TaskProf execute the following commands.

$ cd <TP_ROOT>

$ source build.sh

A successful build will create TaskProf’s shared libraries and

also setup the appropriate environment variables.

A.2 Usage

We illustrate the usage of TaskProf using the tree_sum program in

the tests directory. To generate a proile for the program, execute:

$ cd <TP_ROOT>/tests/tree_sum

$ make

$./tree_sum

The proile execution will create data iles, which can be analyzed

using TaskProf’s proile analysis tool. To generate the parallelism

proile from the proile data ile, execute:

$ $TP_’ENPROF/gentprof

Here, TP_GENPROF is an environment variable that is already

setup by the build script. The parallelism proile will be generated

in the ile ws_profile.csv. The irst row speciies the parallelism

of the entire program and the percentage of critical work performed

by the main function. Other rows specify the parallelism and the

critical work percentage for each spawn site in the program. To

illustrate causal proiling, we have already annotated a region (in

ile TreeMaker.h). The causal proile estimating the improvements

in parallelism for the entire program on optimizing the annotated

region is generated in the ile region_all.csv. It reports the in-

crease in parallelism in the program when the critical work in the

annotated region is reduced by 50×, 100×, 200×, and 400×.

A.3 Reproducing Results

Efectiveness. Using TaskProf, we were able to optimize ive

applications. These applications and their optimized versions can be

downloaded from https://goo.gl/MzP4Tq. We provide the optimized

version of each application in a separate directory. Assuming the

applications have been extracted to the benchmarks folder within

TP_ROOT directory, each application can be compiled and proiled

with TaskProf as follows:

$ cd <TP_ROOT>/benchmarks/<benchmark>

$ make

$ sh run.sh

The optimized version of each application can be compiled and

executed similarly. To ease this process, we also provide a python

script to compile and execute all applications and their optimized

versions.

$ cd <TP_ROOT>/benchmarks

$ python run_bmarks_opt.py > report_opt.txt

The parallelism proile before the optimization and the causal

proile can in found in the ws_profile.csv and region_all.csv

iles in the folder corresponding to the application. The parallelism

proile after optimization can be found in the ws_profile.csv ile

in the folder containing the optimized version of the application.

Performance. To reproduce the results comparing TaskProf’s

parallel proile execution to serial proile execution, download all

benchmark applications from https://goo.gl/svCcZH and extract

them to the benchmarks folder within the TP_ROOT directory.

The script included in the artifact uses jgraph, a postscript graph-

ing tool, to generate graphs. To install jgraph on Ubuntu, execute

the following command:

$ sudo apt-get install jgraph

To convert the postscript graph generated by jgraph to a pdf,

we use epstopdf. To install epstopdf on Ubuntu, execute the fol-

lowing command:

$ sudo apt-get install texlive-font-utils

The artifact includes a python script that executes TaskProf

on all the benchmarks and generates the speedup graph as output.

Proile all applications using the script as shown below:

$ cd <TP_ROOT>/benchmarks

$ python run_bmarks_speedup.py > report.txt

Many applications take a reasonable amount of time to complete

execution. We suggest using the nohup command to run the script.

Our python script reproduces the speedup graph in a pdf ile named

Speedup_graph.pdf.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This paper

is based on work supported in part by NSF CAREER Award CCFś

1453086, a sub-contract of NSF Award CNSś1116682, and a NSF

Award CNSś1441724.

25

https://goo.gl/MzP4Tq
https://goo.gl/svCcZH

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Adarsh Yoga and Santosh Nagarakate

REFERENCES
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The Data Locality of

Work Stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA). 1ś12.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. 2010. HPCTOOLKIT: Tools for Performance Analysis of Optimized
Parallel Programs Http://Hpctoolkit.Org. Concurrency and Computation : Practice
& Experience - Scalable Tools for High-End Computing (2010), 685ś701.

[3] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. 1996. The Quickhull
Algorithm for Convex Hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (Dec. 1996), 469ś483.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT). 72ś81.

[5] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java:
The New Adventures of Old X10. In Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java (PPPJ). 51ś61.

[6] Philippe Charles, Christian Grothof, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: An
Object-oriented Approach to Non-uniform Cluster Computing. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA). 519ś538.

[7] Guancheng Chen and Per Stenstrom. 2012. Critical Lock Analysis: Diagnosing
Critical Section Bottlenecks in Multithreaded Applications. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC). 71:1ś71:11.

[8] Intel Corporation. 2016. Intel(R) 64 and IA-32 Architectures Software Developer’s
Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D.

[9] Intel Corporation. 2017. Intel VTune Ampliier 2017. (2017). Retrieved July 1,
2017 from https://software.intel.com/en-us/intel-vtune-ampliier-xe

[10] Charlie Curtsinger and Emery D. Berger. 2015. Coz: Finding Code That Counts
with Causal Proiling. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP). 184ś197.

[11] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. 2014. Continuously
Measuring Critical Section Pressure with the Free-lunch Proiler. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA). 291ś307.

[12] Luiz DeRose, Bill Homer, and Dean Johnson. 2007. Detecting Application Load
Imbalance on High End Massively Parallel Systems. In Proceedings of the 13th
International Euro-Par Conference on Parallel Processing (Euro-Par). 150ś159.

[13] Kristof Du Bois, Stijn Eyerman, Jennifer B. Sartor, and Lieven Eeckhout. 2013.
Criticality Stacks: Identifying Critical Threads in Parallel Programs Using Syn-
chronization Behavior. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA). 511ś522.

[14] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. 2013.
Bottle Graphs: Visualizing Scalability Bottlenecks in Multi-threaded Applications.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). 355ś372.

[15] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. 2012. Speedup Stacks:
Identifying Scaling Bottlenecks in Multi-threaded Applications. In Proceedings
of the 2012 IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS). 145ś155.

[16] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementa-
tion of the Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation (PLDI).
212ś223.

[17] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford
Taylor. 2011. Kremlin: Rethinking and Rebooting Gprof for the Multicore Age.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 458ś469.

[18] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A
Call Graph Execution Proiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (SIGPLAN). 120ś126.

[19] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. 1983. An execution
proiler for modular programs. Software: Practice and Experience 13, 8 (1983),
671ś685.

[20] Dan Grossman and Ruth E. Anderson. 2012. Introducing Parallelism and Con-
currency in the Data Structures Course. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education.

[21] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. 2010. The Cilkview
Scalability Analyzer. In Proceedings of the Twenty-second Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 145ś156.

[22] Jefrey K. Hollingsworth and Barton P. Miller. 1994. Slack: A New Performance
Metric for Parallel Programs. Technical Report. University ofWisconsin-Madison.

[23] Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor.
2011. Kismet: Parallel Speedup Estimates for Serial Programs. In Proceedings of
the 2011 ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA). 519ś536.

[24] Melanie Kambadur, Kui Tang, and Martha A. Kim. 2014. ParaShares: Finding the
Important Basic Blocks in Multithreaded Programs. In Proceedings of Euro-Par
2014 Parallel Processing: 20th International Conference (Euro-Par). 75ś86.

[25] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. 2008. The vampir
performance analysis tool-set. In Tools for High Performance Computing. 139ś155.

[26] Doug Lea. 2000. A Java Fork/Join Framework. In Proceedings of the ACM 2000
Conference on Java Grande (JAVA). 36ś43.

[27] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The Design
of a Task Parallel Library. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA).
227ś242.

[28] Xu Liu and John Mellor-Crummey. 2011. Pinpointing Data Locality Problems
Using Data-centric Analysis. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 171ś180.

[29] Xu Liu and John Mellor-Crummey. 2013. A Data-centric Proiler for Parallel
Programs. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC). 28:1ś28:12.

[30] Xu Liu and John Mellor-Crummey. 2013. Pinpointing data locality bottlenecks
with low overhead. In 2013 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 183ś193.

[31] Xu Liu and Bo Wu. 2015. ScaAnalyzer: A Tool to Identify Memory Scalability
Bottlenecks in Parallel Programs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). 47:1ś47:12.

[32] Michael McCool, Arch Robison, and James Reinders. 2012. Structured Parallel
Programming: Patterns for Eicient Computation. Morgan Kaufmann.

[33] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and T. Torzewski.
1990. IPS-2: The Second Generation of a Parallel Program Measurement System.
IEEE Transactions on Parallel and Distributed Systems 1, 2 (April 1990), 206ś217.

[34] Jungju Oh, Christopher J. Hughes, Guru Venkataramani, and Milos Prvulovic.
2011. LIME: A Framework for Debugging Load Imbalance in Multi-threaded Exe-
cution. In Proceedings of the 33rd International Conference on Software Engineering
(ICSE). 201ś210.

[35] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 2000. Online Computa-
tion of Critical Paths for Multithreaded Languages. In Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing (IPDPS). 301ś313.

[36] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Scalable and Precise Dynamic Datarace Detection for Structured Parallelism.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 531ś542.

[37] James Reinders. 2007. Intel Threading Building Blocks. O’Reilly & Associates, Inc.
[38] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiserson,

and Charles E. Leiserson. 2015. The Cilkprof Scalability Proiler. In Proceedings of
the 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
89ś100.

[39] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief Announcement:
The Problem Based Benchmark Suite. In Proceedings of the 24th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 68ś70.

[40] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey. 2010. Scal-
able Identiication of Load Imbalance in Parallel Executions Using Call Path
Proiles. In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). 1ś11.

[41] Nathan R. Tallent and John M. Mellor-Crummey. 2009. Efective Performance
Measurement and Analysis of Multithreaded Applications. In Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 229ś240.

[42] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterield. 2010. Ana-
lyzing Lock Contention in Multithreaded Applications. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 269ś280.

[43] Adarsh Yoga and Santosh Nagarakatte. 2017. TaskProf. (2017). Retrieved July 1,
2017 from https://github.com/rutgers-apl/TaskProf

[44] Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. 2016. Parallel Data Race
Detection for Task Parallel Programs with Locks. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 833ś845.

[45] Tingting Yu and Michael Pradel. 2016. SyncProf: Detecting, Localizing, and
Optimizing Synchronization Bottlenecks. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA). 389ś400.

26

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/rutgers-apl/TaskProf

	Abstract
	1 Introduction
	2 Background
	3 Parallelism Profiler
	3.1 Parallel Profile Execution
	3.2 Offline Analysis of the Profile Data

	4 Causal Profiling
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	A Artifact Description
	A.1 Setup
	A.2 Usage
	A.3 Reproducing Results

	Acknowledgments
	References

