
Parallelism-Centric What-If and Differential
Analyses

Adarsh Yoga
Rutgers University, USA

adarsh.yoga@cs.rutgers.edu

Santosh Nagarakatte
Rutgers University, USA

santosh.nagarakatte@cs.rutgers.edu

Abstract

This paper proposes TaskProf2, a parallelism profiler and an
adviser for task parallel programs. As a parallelism profiler,
TaskProf2 pinpoints regions with serialization bottlenecks,
scheduling overheads, and secondary effects of execution.
As an adviser, TaskProf2 identifies regions that matter in
improving parallelism. To accomplish these objectives, it
uses a performance model that captures series-parallel re-
lationships between various dynamic execution fragments
of tasks and includes fine-grained measurement of compu-
tation in those fragments. Using this performance model,
TaskProf2’s what-if analyses identify regions that improve
the parallelism of the program while considering tasking
overheads. Its differential analyses perform fine-grained dif-
ferencing of an oracle and the observed performance model
to identify static regions experiencing secondary effects. We
have used TaskProf2 to identify regions with serialization
bottlenecks and secondary effects in many applications.

CCSConcepts ·General and reference→Performance;
· Software and its engineering→ Software performance.

Keywords Profilers, Parallelism, What-if analyses

ACM Reference Format:

Adarsh Yoga and Santosh Nagarakatte. 2019. Parallelism-Centric

What-If and Differential Analyses. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’19), June 22ś26, 2019, Phoenix, AZ, USA.ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3314221.3314621

1 Introduction

Given the appeal of performance portable code, many task
parallel frameworks have become mainstream (e.g., Intel
Threading Building Blocks (TBB) [16], Cilk [23], Microsoft
Task Parallel Library [35], X10 [11], OpenMP tasks [52], and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314621

Java Fork/Join tasks [34]). Programming with tasks addresses
the problem of load imbalance by relying on a runtime to
distribute programmer-specified tasks to hardware threads.
Beyond load imbalance, a task parallel program can still ex-
perience performance issues: limited parallel work, runtime
overhead due to fine-grained tasks, and secondary effects of
execution such as false sharing. Hence, a programmer will
benefit from profilers that pinpoint these bottlenecks.

There is a large body of work on identifying these patholo-
gies. This includes load imbalances [18, 50, 63, 64], tasking
overheads [25, 30, 56], serialization bottlenecks [26, 59, 68],
scalability bottlenecks [19, 20, 22], memory contention [41,
46], and data locality issues [2, 38ś40, 42]. While these tech-
niques are useful in identifying specific bottlenecks, they do
not provide useful information on the regions that matter in
improving the overall parallelism of the program.
Our work is related to Coz [17] and Intel Advisor [14] in

predicting performance improvements. Coz measures the
virtual speedup of a progress point by slowing down all
other concurrently executing threads and by building an
analytical model to estimate the speedup. The improvements
suggested by Coz are specific to an execution with a given
number of threads. Specifically, it does not indicate whether
the program will have scalable speedups when executed on a
machine with a different core/thread count. Moreover, Coz’s
speedup estimates can widely vary based on the choice of
progress points. Identifying appropriate progress points to
obtain useful feedback from Coz in a large application can
be challenging. Similarly, Intel Advisor also does not help in
identifying the regions for annotation to estimate speedup
improvements.
Our prior work, TaskProf [68], identifies parts of the

program that matter in increasing logical parallelism. Logi-
cal parallelism quantifies the speedup of the execution for
a given input on a large number of processors assuming
an ideal runtime (i.e., from Amdahl’s law) [23, 26, 59, 68].
It is constrained by the longest chain of work that must
be executed serially. To measure logical parallelism for a
given input, TaskProf identifies dynamic fragments of
tasks (without any task runtime calls) that must be exe-
cuted serially and those that can be executed in parallel.
It also measures the amount of work performed by each

485

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314621
https://doi.org/10.1145/3314221.3314621

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

such fragment. TaskProf uses the dynamic program struc-
ture tree (DPST) [54] representation for maintaining series-
parallel relationships between various fragments of execu-
tion. In the context of measuring logical parallelism, the
series-parallel relationship between various fragments of
tasks and fine-grainedmeasurements of computation is a per-
formancemodel of the execution for a given input. TaskProf
uses this performance model to identify serialization bottle-
necks and to estimate improvements in performance when
programmers specify the region they intend to optimize.
By measuring and analyzing parallelism, the profiler can
identify serialization bottlenecks that would manifest in an
execution on a machine with a large core count even when
the profile execution is on a machine with a low core count.

Although TaskProfwas useful in our initial experiments,
we discovered the following limitations: (1) it did not con-
sider the cost of orchestrating parallel execution, which can
result in over-optimistic suggestions, (2) it required the pro-
grammer to annotate regions to estimate improvements in
parallelism, which can be challenging in a large applica-
tion, (3) it maintained the entire performance model on disk,
which restricted its use to small programs, and (4) it did not
provide feedback on the secondary effects of execution.
This paper presents TaskProf2: a parallelism profiler

and an adviser. It identifies regions with low parallelism and
tasking overheads. As an adviser, it automatically identifies
a set of static regions that matter in increasing parallelism
while accounting for tasking overheads. It includes what-
if analyses that identify regions that matter in improving
parallelism. It also includes a novel differential analysis that
identifies regions experiencing secondary effects of execu-
tion. A key enabler for these analyses is a performance model
that consists of series-parallel relationships and fine-grained
measurements of computation.
TaskProf2 does not maintain the entire performance

model in memory. It constructs the performance model dur-
ing program execution. TaskProf2 has two modes of usage:
an offline mode where it maintains the entire performance
model on disk (Section 4.1) and an on-the-fly mode where
it does not maintain the performance model on disk (Sec-
tion 4.2). In both modes, TaskProf2 computes the paral-
lelism, serial work on the critical path, the code region per-
forming the highest work on the critical path, and the addi-
tional work done to create tasks. Finally, it summarizes this
information with each spawn site (Section 4.1). Figure 1(c)
shows a sample parallelism profile that highlights serializa-
tion bottlenecks and spawn sites with high tasking overhead.
What-if analyses. In its advisory role, TaskProf2’s

what-if analyses identify parts of the program that must
be optimized to improve parallelism. Similar to our prior
work [7, 68], what-if analyses estimate improvements in
parallelism using the performance model even before the
program is concretely optimized. To quantify the effect of
addressing a serialization bottleneck, what-if analyses model

the parallelization of a region of the program by reducing the
serial work while keeping the total work unchanged when
the program’s overall parallelism is computed. Unlike our
prior work, TaskProf2 automatically identifies all regions
that need to be optimized to increase the parallelism to a
user-specified threshold while taking the cost of creating
tasks into account. TaskProf2 does not require programmer
annotations. In the on-the-fly mode where the performance
model is not available on disk, TaskProf2 identifies all re-
gions that matter in increasing parallelism iteratively. It first
executes the program, computes the parallelism profile, and
identifies the region with the highest work on the critical
path. In the subsequent iterations, it computes parallelism
by reducing the serial work for the identified regions while
considering the cost of tasking (Section 4.2).

Differential analyses. Apart from serialization bottle-
necks and tasking overheads, a low speedup can be attrib-
uted to secondary effects of execution. The program typically
observes work inflation (or in any other metric of interest)
compared to an oracle execution when it experiences sec-
ondary effects [51]. Our performance model enables reason-
ing about work inflation at a fine-granularity rather than
just considering inflation for the entire program. We pro-
pose differential performance analyses that identify program
regions experiencing secondary effects by performing a fine-
grained comparison of two performance models: one for the
parallel execution and the other for an oracle execution (Sec-
tion 5). The serial execution of the same parallel program
can be considered as an oracle execution. The profiler per-
forms this fine-grained comparison with multiple metrics of
interest. The profiler highlights program regions that expe-
rience inflation with a metric of interest. Figure 1(e) shows
the differential profile reported by TaskProf2.

TaskProf2 is open-source and publicly available [71]. We
evaluated TaskProf2 with twenty-three applications that
use the Intel Threading Building Blocks library for tasking.
TaskProf2 identified bottlenecks in all of them.We designed
concrete strategies to improve the speedup with nine appli-
cations using the feedback from the profiler.

2 Background on the DPST

TaskProf2 uses the dynamic program structure tree (DPST)
representation to encode series-parallel relationship in the
performance model. The DPST was originally proposed for
explicit async-finish programs [54]. We modify its construc-
tion for task parallel programs without explicit finish state-
ments [67, 68, 73]. The DPST can be constructed in parallel
during program execution.
The DPST is an ordered tree with three kinds of nodes:

step nodes, async nodes, and finish nodes. A step node rep-
resents a dynamic execution fragment (longest sequence of
instructions without any task runtime calls). All useful work
in the program happens in the step nodes. Step nodes are

486

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

40

10

1 void compute(int* a, int low, int high)

2 {

3 if(high-low <= GRAINSIZE)

4 {

5 for(int i = low; i < high; i++) {

6 for(int j = 0; j < ROUNDS; j++) {

7 a[i] += serial_compute(a[i]);

8 }

9 }

10 } else {

11 int p = (low + high)/2;

12 spawn compute(a, low, p);

13 spawn compute(a, p, high);

14 sync;

15 }

16 }

17

18 int main(int argc, char** argv)

19 {

20 int *a = create_array(SIZE);

21 spawn compute(a,0,SIZE);

22 sync;

23 int sum = reduce(a);

24 print sum;

25 }

F0

S0
F1

F2

A1 A2

F3 F4

S5

S4

A3 A5

S7

A7

A4

S9

S6

A11

S13

A6

S8

S3

A0

F5

A8

S10

A9

S11

A10

S12

F6 F7

A12

S14

A13

S15

F8

A14

S16

S1

S210

10

10 10 10 10

200 200 220 220 200 220 200 220

20 1200

40
50

50 60 50 60

40

60
50

40
40

60 50
60

Line
number

Parallelism

L18

L13

L12

2.02

2.26

2.23

(c) Parallelism and tasking overhead profile

L21 7

Tasking overhead
breakdown percent

5.34

41.33

41.33

12

(a) Example task parallel program (b) Performance model

Region

L5 - L9

L10-L11

L23-L24

(e) Differential Profile

L19-L20

Inflation
cycles

4.12X

1X

1.02X

1X

Inflation
HITM

108X

1.5X

1X

1X

Inflation
loc DRAM

1X

1X

1X

1X

Inflation
rem DRAM

1X

1X

1X

1X

Line
number

Parallelism

L18

L13

L12

5.71

2.26

2.23

(d) What-if analyses regions and what-if profile

L21 7

Parallelization
factor

Regions

L23-L24 4X

Tasking overhead : 25.25% of total work

L5-L9 L5-L9 L5-L9 L5-L9 L5-L9 L5-L9

L12 L13 L12 L13 L12 L13 L12 L13

L5-L9 L5-L9

L12 L13 L12 L13

L12 L13

L21

L19-L20 L23-L24

L10-L11

L10-L11 L10-L11

L10-L11 L10-L11 L10-L11 L10-L11

Figure 1. (a) An example task parallel program. (b) The performance model for an execution of the program in (a), where
the GRAINSIZE is 1/8th the size of the array. The number in the rectangular box next to each step node represents the work
performed in the program segment corresponding to the step node. The number in diamond boxes next to each async node
represents the cost of creating the task corresponding to the async node. (c) Parallelism profile reported by our profiler. (d) The
regions reported by what-if analyses to achieve a parallelism of 16 and the what-if profile if the reported regions are optimized.
(e) Differential profile showing inflation of various metrics in parallel execution over serial execution. We show four hardware
performance counter event types: execution cycles, HITM, local DRAM accesses, and remote DRAM accesses.

leaves in the DPST. In contrast, finish and async nodes are
intermediate nodes that are used to encode series-parallel
relationships between various step nodes. The edges in the
DPST represent the parent-child relationship between the
nodes. The DPST captures the logical series-parallel relation-
ship between fragments of tasks according to the semantics
of the tasking constructs. It is possible that two logically
parallel fragments execute serially on the same thread or
core in a specific execution.
Properties of the DPST. The formal treatment of the

DPST is available in prior work [54]. We highlight the key
properties of the DPST that are useful with respect to the
profiler. (1) The children of a node in the DPST are ordered
left-to-right to reflect serial execution of various fragments
of the task represented by that node. (2) All nodes in the sub-
tree under an async node can logically execute in parallel
with all sibling nodes to the right of the async node and their
descendants. (3) All nodes in the sub-tree under a finish node
happen in series with all sibling nodes to the right of the
finish node and their descendants. (4) Two step nodes can

logically execute in parallel if the child of the least common
ancestor of the step nodes, which is also an ancestor of the
left-most step node, is an async node. (5) The DPST does not
change across different schedules for a given input provided
the program is free of data races. If the program uses locks or
critical sections, the DPST does not change across schedules
for Abelian programs [12].

Illustration. Figure 1(b) provides the DPST for an exe-
cution of the program in Figure 1(a). Nodes A0-A14 are the
async nodes, F0-F8 are the finish nodes, and S0-S16 are
the step nodes in the DPST. An async node is created when
the program spawns a task. The async nodes A0, A1, and
A2 are created when the program spawns tasks in line 21,
line 12, and line 13 in Figure 1(a), respectively. A finish node
represents a block of execution that is in series with the
code following the block. In Figure 1(b), the finish node F1
represents the block of execution starting with the creation
of a task in line 21 in Figure 1(a) and terminating with the
sync statement in line 22 in Figure 1(a). The step node S0
represents the set of dynamic instructions between lines

487

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

19-20 in Figure 1(a). The step nodes S3 to S8 represent dif-
ferent dynamic instances of the region between L10-L11 in
Figure 1(a). Similarly, the step nodes S9 to S16 represent
different dynamic instances of the region between L5-L9 in
Figure 1(a).

We can clearly identify if two step nodes logically execute
in parallel, using the DPST. Step nodes S13 and S14 logi-
cally execute in parallel since their least common ancestor
is F7 and the immediate child of F7 on the path to S13 is
an async node (i.e. A11). In contrast, nodes S7 and S13 in
Figure 1(b) execute serially because the immediate child of
their least common ancestor (i.e., A5) on the path to S7 is not
an async node. TaskProf2 uses these properties to compute
the parallelism profile and to perform what-if analyses.

3 High Level Overview

We provide an overview of what-if and differential analyses
using a task parallel program shown in Figure 1(a), which
recursively spawns tasks and performs some computation
on each element of an array. We use spawn and sync to
represent the fork and join of a task, respectively. When
executed on a machine with four cores, the speedup of the
program is 1.35× over a serial execution. As this program
has low speedup, the user may want to profile it.
Performance model. The profiler constructs a perfor-

mancemodel by executing the program for a given input. The
performance model consists of three components: (1) series-
parallel relationship between various dynamic fragments
of tasks in the execution encoded as a dynamic program
structure tree (DPST) [54], (2) fine-grained measurement
data for computation performed by each dynamic execution
fragment of tasks, and (3) amount of work performed by the
runtime to create tasks. The series-parallel relationship along
with this fine-grain measurement of work enables what-if
analyses. The measurement of task creation work allows
TaskProf2 to pinpoint sources of high tasking overhead in
the program (see Section 4). Comparison of computation
from two performance models, one from a parallel execution
and another from an oracle execution, enables our profiler to
identify sources of secondary effects (Section 5). Figure 1(b)
illustrates the performance model of the program in Fig-
ure 1(a). Each step node has the location information about
the source code it represents and the amount of work per-
formed by it (shown next to each step node in Figure 1(b)).
Each async node has the location information of the spawn
site and the number of cycles spent by the runtime to create
the task (shown next to each async node in Figure 1(b)).

Parallelism profile. TaskProf2 generates a parallelism
profile that specifies the parallelism and tasking overhead of
the entire program and at each spawn site in the program
by analyzing the performance model (Section 4). Figure 1(c)
presents the parallelism profile for an execution of the pro-
gram in Figure 1(b). It shows that the program has a low

parallelism of 2.02 and a high tasking overhead of 25% (see
the tasking overhead percent in the last line of Figure 1(c)).
To improve the speedup, we need to improve the parallelism
in the program and reduce the tasking overhead.
Identifying cut-offs with recursive decomposition.

The parallelism profile in Figure 1(c) reports that the pro-
gram performs about 25% additional work to create tasks,
which indicates that the cut-off for recursive decomposition
is too small. The profile also indicates that the two recursive
calls (line 12 and line 13 in Figure 1(a)) together account for
82.66% of the task creation overhead. We can reduce task-
ing overheads by decreasing the parallelism until the work
done by the step nodes is reasonably higher than the average
task creation overhead. We increased the cut-off point in
Figure 1(a). The tasking overhead reduced to 11.78%. The
speedup on a 4-core machine increased from 1.35× to 1.58×.

What-if analyses for guidance.What-if analyses over
the performance model enable the profiler to estimate the
change in parallelism of the program when any region is
hypothetically optimized. Usingwhat-if analyses, the profiler
iteratively identifies all static regions in the program that
need to be optimized to increase the parallelism to a user-
specified threshold while accounting for tasking overheads.
Figure 1(d) reports the region identified by TaskProf2

using what-if analyses when the user wants to increase the
parallelism of the program to 16. In this example, the average
tasking overhead is 50 units per task creation and we assume
that each step node has to do at least 5× the tasking over-
head (i.e., 250) to amortize the cost of parallel execution. To
compute regions that matter, the profiler identifies the step
node performing the highest work on the critical path (i.e.,
S1 performing 1200 units). The profiler’s what-if analyses re-
duces the serial work of S1 by 4× because reducing the serial
work any further would make tasking overhead significant.
It recomputes the parallelism and chooses the step node with
the highest work on the recomputed critical path. In this ex-
ample, the profiler discovers that it cannot reduce the serial
work of any other node because tasking overheads would
dominate compared to useful work. The profiler reports the
discovered regions and the parallelism of the program and
each spawn site if the regions reported in the what-if profile
are parallelized. The what-if profile in Figure 1(d) shows that
the parallelism of the program can increase to 5.71 when we
parallelize the reported region. After concretely increasing
grain size to reduce tasking overheads and parallelizing the
region reported by the what-if profile, the speedup increased
from 1.35× to 2.91×.
Differential analyses to identify secondary effects.

Since the speedup of the program in Figure 1(a) is 2.91× after
our optimizations on a 4-core machine, the program is likely
experiencing secondary effects of execution. The profiler’s
differential analyses compares the performance model of the
parallel execution and that of an oracle execution to identify
static regions experiencing secondary effects. The execution

488

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 function ComputeProfile(T)

2 foreach N in bottom-up traversal of T do

3 CN ← ChildNodes(N)

4 N .w ←
∑

C ∈CN

C .w

5 ⟨N .s,N .l⟩ ← SerialWork(N)

6 AN ← AsyncChildNodes(N)

7 FN ← FinishChildNodes(N)

8 N .t ←
∑

A∈AN

A.c +
∑

C ∈CN

C .t

9 N .et ←
∑

A∈AN

A.c +
∑

F ∈FN

F .et

10 end

11 AggregatePerSpawnSite(T)

12 return ⟨T .w,T .s,T .l ,T .t⟩

Figure 2. Algorithm to produce the parallelism profile given
a performance model T . The work performed by each step
node is represented by w. Each async node includes the cost
of task creation (i.e., variable c). The algorithm computes
⟨w, s, l , t⟩ for each intermediate node in T , where w is the
work, s is the serial work, l is the list of step nodes on the
critical path, t is the tasking overhead, and et is the exclusive
tasking overhead. ChildNodes returns all the child nodes of
the input node. FinishChildNodes and AsyncChildNodes

return the async and finish child nodes of the input node.
AggregatePerSpawnSite aggregates the work, serial work
and tasking overhead per spawn site.

of a parallel program on a single core with the same tasking
structure can serve as an oracle execution. When a program
experiences secondary effects, there will be inflation in some
metric of interest.
Figure 1(e) presents the differential profile for the pro-

gram with respect to multiple metrics of interest. One can
notice that the region L5-L9 is experiencing inflation in the
total number of hardware execution cycles and the number
of cache accesses in the modified state (i.e., HITM) when
compared to an oracle execution. One possible reason for
an increase in HITM hardware counters in the cache is false
sharing. This program indeed has false sharing. We fixed
the false sharing problem and the speedup of the program
increased from 2.91× to 3.83×.

4 Profiling with What-If Analyses

TaskProf2 is both a parallelism profiler and an adviser. As
a profiler, it identifies parts of the program with low par-
allelism. As an adviser, it identifies regions of the program
that matter in increasing parallelism. To identify regions
that matter, TaskProf2 needs a strategy to quantify the
impact of parallelizing a region on the program’s overall par-
allelism. The series-parallel relationships encoded as a DPST

along with the fine-grained measurement of work in the
step nodes can enable the computation of logical parallelism.
Hence, the DPST enriched with fine-grained measurements
is a performance model.
The performance model consists of three components:

(a) series-parallel relationships encoded as a DPST, (b) fine-
grainedmeasurement of computation for each step node, and
(c) fine-grained measurement of the cost incurred to create
tasks in the program, which is associated with an async
node. To provide feedback about recursive decomposition
of tasks and the task creation overhead, the performance
model also includes the amount of work performed to create
tasks. The profiler can measure any metric of interest (e.g.,
execution time, hardware cycles, or dynamic instructions)
corresponding to the step node.

TaskProf2 constructs this performance model in parallel
in a distributed fashion when the task parallel runtime cre-
ates, executes, waits, or steals tasks. The profiler updates its
data structures on task runtime calls and starts the measure-
ment of work with hardware performance counters when
the runtime returns to the program. The profiler does not
maintain the entire performance model in memory. It main-
tains a small slice of the performance model, which is pro-
portional to the number of active tasks maintained by the
task parallel runtime. TaskProf2 contains two types of
analyses: an offline parallelism analysis that maintains the
entire performance model on disk and an on-the-fly paral-
lelism analysis that does not maintain the entire performance
model either on disk or in memory. The offline analysis en-
ables TaskProf2 to identify regions that matter without
re-execution of the program. In contrast, on-the-fly analysis
enables the use of TaskProf2with long running applications
but requires re-execution of the program for what-if anal-
yses. First, we describe our algorithm with the assumption
that the entire performance model is available. Section 4.2
describes our on-the-fly algorithm.

4.1 Computing Parallelism and Tasking Overhead

Given that the entire performance model is available, the
parallelism profile can be computed by performing a bottom-
up traversal of the performancemodel. TaskProf2 computes
five quantities for each intermediate node in the bottom-up
traversal: (1) the total work under the sub-tree, (2) the total
serial work under the sub-tree, (3) the set of step nodes
performing the largest amount of serial work, (4) the total
tasking overhead under the sub-tree, and (5) the exclusive
tasking overhead to spawn the immediate children of the
intermediate node. TaskProf2 computes the parallelism in
the program using the total work and the total serial work
information. The list of step nodes performing the serial work
for the root node in the performance model is the critical
path of the program. The profiler computes the total and
the exclusive tasking overhead to provide feedback about
the amount of additional work done to orchestrate parallel

489

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

1 function SerialWork(N)

2 SN ← StepChildNodes(N)

3 FN ← FinishChildNodes(N)

4 s ←
∑

S ∈SN

S .w +
∑

F ∈FN

F .s

5 l ← (
⋃

F ∈FN

F .l) ∪ SN

6 foreach A ∈ AsyncChildNodes(N) do

7 LSA ← LeftStepSiblings(A)

8 LFA ← LeftFinishSiblings(A)

9 lw ←
∑

S ∈LSA

S .w +
∑

F ∈LFA

F .s

10 if lw +A.s > s then

11 s ← lw +A.s

12 l ← (
⋃

F ∈LFA

F .l) ∪ LSA ∪A.l

13 end

14 end

15 return ⟨s, l⟩

Figure 3. Algorithm to compute the serial work and the
list of step nodes on the critical path for a given input
node N in the DPST. StepChildNodes, FinishChildNodes,
and AsyncChildNodes return the children step, finish, and
async nodes of the given input node, respectively. Left-
StepNodeSiblings and LeftFinishNodeSiblings return all
the left step and finish siblings of the input node, respectively.

execution. Subsequently, this information is aggregated with
each spawn site.
Figure 2 presents the algorithm to compute the above

five quantities for each intermediate node. The values of the
children bubble up to the parent in a bottom-up traversal. The
total work at an intermediate node (variable w in Figure 2) is
the sum of the work performed by all step nodes in the sub-
tree under the node. In the context of a bottom-up traversal,
the total work is equal to the sum of the work performed by
all the immediate children of that node (line 4 in Figure 2).

Computing serial work.We leverage the properties of
the DPST to compute the highest serial work in a sub-tree.
Among all the step nodes in the sub-tree under an interme-
diate node, some subset of these step nodes execute serially.
We have to compute the chain of step nodes that execute
serially. There can be multiple such chains. We have to select
the chain that performs the highest serial work.
Figure 3 presents the algorithm to compute both the se-

rial work (variable s in Figure 3) and the list of step nodes
performing the serial work (variable l in Figure 3). All im-
mediate step node children of an intermediate node execute
serially. Similarly, any serial work done by the immediate fin-
ish children also adds to the serial work. Hence, the algorithm
in Figure 3 initially sets the work done by the immediate step

children and the serial work done by the immediate finish
children as the serial work (lines 2-4 in Figure 3). Similarly,
the list of step nodes performing serial work is the union of
the immediate step children and the list performing serial
work under the immediate finish children (line 5 in Figure 3).

Each async node child of an intermediate node creates
a chain of serial work. The descendants of an async node
execute in parallel with the siblings of the async node that
occur to the right of the async node. The step and finish
siblings that occur to the left of the async node occur in
series with the descendants of the async node. When an
intermediate node has an async child, the highest serial work
is the maximum of : (1) serial work done by the step and
finish children to the left of the async node and the serial
work performed by the sub-tree under async node (lines
9-11 in Figure 3) or (2) serial work done by all immediate
step and finish children. Hence, the algorithm examines the
serial chain created by each async node and chooses the
path with the maximum serial work (lines 6-14 in Figure 3).
Similarly, the list of step nodes performing serial work is
updated whenever the serial work is updated.
For example, consider the intermediate node F8 in Fig-

ure 1(b). It has two async nodes Ð A13 and A14Ð as children.
The serial work of F8 is the maximum of the serial work per-
formed by two chains: (1) serial work done by A13 as it does
not have left step or finish siblings or (2) serial work done
by A14 as it does not have any left step or finish siblings.
Computing tasking overheads. To provide feedback

about the cost of parallel execution, our profiler also com-
putes the total tasking overhead incurred in the sub-tree
under an intermediate node. It also computes the exclusive
tasking overhead incurred to spawn its immediate children.
The total tasking overhead enables the user to quantify the
amount of extra work done to create tasks in contrast to the
useful work in the program. The exclusive tasking overhead
enables attribution of the overhead to specific spawn sites.
Each async node knows the cost incurred to create that spe-
cific task from the profile execution (variable c in Figure 2).
The total tasking overhead of an intermediate node (vari-
able t in Figure 2) is the sum of the task creation costs of
all async children and the total tasking overheads under the
sub-trees of all children (line 8 in Figure 2). The exclusive
tasking overhead (variable et in Figure 2) of an intermedi-
ate node is sum of the task creation costs of the immediate
async children and the exclusive tasking overheads of its
finish children (line 9 in Figure 2). We need to propagate the
exclusive tasking overhead from the finish children because
this overhead is eventually attributed to a spawn site and
only async nodes have spawn site information.
Aggregating information per-spawn site. The profiler

aggregates the information about parallelism, tasking over-
heads, and the step nodes performing serial work to static
spawn sites in the program and produces the parallelism
profile similar to Figure 1(c). TaskProf2 uses the spawn site

490

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 function OnNodeCreation(N , P)

2 N .lw ← P .sw

3 function OnNodeCompletion(N , P)

4 P .w ← P .w + N .w

5 if N .lw + N .s > P .s then

6 P .s ← N .lw + N .s

7 end

8 if N is an ASYNC node then

9 AggregatePerSpawnSite(N)

10 P .t ← P .t + N .c + N .t

11 P .et ← P .et + N .c

12 else

13 P .sw ← P .sw + N .s

14 P .t ← P .t + N .t

15 P .et ← P .et + N .et

16 end

Figure 4. On-the-fly algorithm to compute the parallelism
profile without the entire performance model. Each node
tracks six quantities: work (w), serial work in the sub-tree (s),
serial work done by the left siblings (lw), serial work done
by its immediate children (sw), total tasking overhead in
the sub-tree (t), and exclusive tasking overhead to spawn
immediate child tasks (et). This information is updated when
the node (N) is added or removed in the performance model.
P is the parent of N .

information with the async node in the performance model
to perform this aggregation. In the presence of recursive
calls, TaskProf2 aggregates information to a spawn site
corresponding to an async node if the path from the root
to the current async node does not contain another async
node with the same spawn site information. Figure 1(c) high-
lights spawn sites performing significant serial work and
experiencing the highest tasking overhead.

4.2 On-the-Fly Parallelism Profile

As the performance model for a long-running program can
be large, TaskProf2’s on-the-fly mode does not maintain
the entire performance model either in memory or on disk. It
maintains a small slice of the performance model in memory
that is proportional to the number of active tasks. In the
on-the-fly mode, each node (1) tracks sufficient information
to compute the work and serial work on the critical path
without the entire performance model, (2) summarizes the
information about the computation in the sub-tree under the
node to the parent, and (3) deallocates on completion.
Specifically, TaskProf2 tracks six quantities with each

node to compute the parallelism profile. First, the total work
(w) performed by the sub-tree under the node. Second, the
serial work on the critical path (s) performed in the sub-
tree under the node. Third, serial work performed by the

siblings to the left (lw) of a given node. We need to track
the serial work done by the left siblings of a node as we
will not have the left siblings in the performance model
when the node completes execution. Fourth, the serial work
performed by the immediate children (sw) of a given node.
This information will be useful to initialize the serial work
done by the left siblings for a child of the given node. Fifth,
the total tasking overhead (t) under the sub-tree of a given
node. Sixth, the exclusive tasking overhead (et) to attribute
the cost of spawning child tasks to specific spawn sites.
Figure 4 presents our algorithm to compute the paral-

lelism profile on-the-fly without maintaining the entire per-
formance model either in memory or on-disk. We leverage
the property that the series-parallel relationship between
the existing nodes are unchanged even when new nodes are
added to the performance model. When a node is added to
the performance model, the parent initializes the left sibling
work (lw) for the node. The parent uses the serial work per-
formed by its immediate children (sw) to initialize the left
sibling work for the node (line 2 in Figure 4). It has to be
initialized by the parent when the node is created because
the parent can create other siblings to the right of the node
by the time the entire sub-tree under the node completes.

When a node completes, the node checks if it contributes
to the critical path under the parent (lines 5-7 in Figure 4).
Hence, it checks if the serial work done by the left siblings
(lw) and the serial work in the sub-tree under the node (s) is
greater than the serial work on the critical path for the par-
ent, which is similar to offline analysis algorithm (lines 9-10
in Figure 3). Whenever an async node completes, TaskProf2
propagates information in three steps. First, it adds the cost
of task creation to the exclusive tasking overhead to the
parent (line 11 in Figure 4). Second, it adds the total task-
ing overhead under the sub-tree of the async node to the
tasking overhead of the parent (line 10 in Figure 4). Third, it
aggregates the information with respect to the spawn site
of the async node. Whenever a step or a finish node com-
pletes, TaskProf2 adds the serial work under the node (s)
to the parent’s serial work performed by the immediate chil-
dren (sw), which is useful to initialize the left sibling work
for future children of the parent node. TaskProf2 also prop-
agates the tasking overheads from the node to the parent.
Figure 5 illustrates the updates to the six quantities when a
node is created and when a step, finish, and an async node
completes.
Additions for what-if analyses. To enable what-if anal-

yses, we also need to track the step node performing the
highest work on the critical path. It needs to be updated
whenever the critical path is updated. The algorithm in Fig-
ure 4 omits this information. It can be accomplished by track-
ing additional information that identifies the static location
and the step node performing the highest work with lw, s,
and sw quantities. It needs to be updated when any of the
three quantities change for each node.

491

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

10S8

A6

A13

S15

F8

A14

S16

10

50 60

Node

A6

A13

F8

A14

w

10

0

0

0

s

10

0

0

0

lw

0

0

10

0

sw

10

0

0

0

t

0

0

0

0

et

0

0

0

0

S8

A6

A13

S15

F8

A14

S16

50 60

Node

A6

A13

F8

A14

w

10

0

0

220

s

10

0

0

220

lw

0

0

10

0

sw

10

0

0

220

t

0

0

0

0

et

0

0

0

0

220

S8

A6

A13

S15

F8

A14

S16

10

50 60

Node

A6

A13

F8

A14

w

10

0

220

220

s

10

0

220

220

lw

0

0

10

0

sw

10

0

0

220

t

0

0

60

0

et

0

0

60

0

220

S8

A6

A13

S15

F8

A14

S16

10

50 60

Node

A6

A13

F8

A14

w

430

200

420

220

s

230

200

220

220

lw

0

0

10

0

sw

230

200

0

220

t

110

0

110

0

et

110

0

110

0

200 220

(a) Initial sub-tree (b) After completion of S16 (c) After completion of A14 (d) After completion of F8

Figure 5. An illustration of on-the-fly parallelism computation for the sub-tree rooted at A6 in Figure 1(b). (a) The sub-tree
after the creation of the nodes with the quantities initialized. (b), (c), and (d) show the sub-tree and the six quantities described
in Section 4.2 after the completion of step node S16, async node A13, and finish node F8, respectively. The nodes and the
quantities for those that have already completed are grayed out.

4.3 Identifying Regions with What-If Analyses

The parallelism profile highlights spawn sites with low par-
allelism and/or high tasking overheads. The user may want
to explore these regions. However, the user will not know
whether parallelizing them matters in increasing parallelism.
Even after successfully parallelizing a region, the parallelism
may not increase when the program has multiple chains of
step nodes that perform similar amount of serial work.
TaskProf2’s what-if analyses estimate improvements in

parallelism using the performance model even before the
programmer has concretely parallelized these regions. The
what-if analyses mimic the effect of parallelization by re-
ducing the serial work performed by the step nodes in the
performance model corresponding to a region of interest
by the intended parallelization amount while keeping total
work unchanged. Subsequently, we can compute the paral-
lelism of the entire program as described in Section 4.1. A
possible use case of what-if analyses is to allow the program-
mer to iteratively identify regions that matter in increasing
parallelism, one region at a time. Our prior work took this
approach [68]. However, such an approach can be time con-
suming for the programmer especially while performance
debugging a large application. TaskProf2 automatically
identifies all regions that need to be parallelized to increase
the parallelism in the program to a user-specified thresh-
old. Although one can theoretically reduce the serial work
by any amount, it is practically infeasible because creating
and executing a task incurs some overhead. To provide a
realistic view of possible parallelization opportunities, our
what-if analyses also consider the cost of creating tasks to
orchestrate parallel execution.
Our what-if analyses can be used when the entire per-

formance model is available on disk or with the on-the-fly
mode. When then entire performance model is available on

disk, what-if analyses can identify regions that need to be op-
timized without re-executing the program. In the on-the-fly
mode, the program is executed multiple times to identify re-
gions that matter. In each such re-execution, the serial work
for all the identified regions from the previous iterations are
reduced during parallelism computation on node completion,
which mimics the effect of parallelization.

Figure 6 presents our algorithm to identify all static re-
gions in the program that need to be parallelized. It assumes
that the entire performance model is available. The program-
mer specifies the anticipated parallelism that the program
is expected to achieve, the tasking overhead threshold, and
the maximum amount of parallelization feasible for a region.
TaskProf2 computes the parallelism profile (line 3 in Fig-
ure 6), identifies the step node performing the highest work
on the critical path, and the static region corresponding to
the step node (line 4 in Figure 6). It reduces the serial work of
all the step nodes that correspond to the identified region by
the maximum amount of parallelization feasible while keep-
ing the total work done by the region unchanged (lines 8-14
in Figure 6). The serial work of a step node is reduced to
the maximum of either the threshold tasking overhead or
the serial work reduced by the parallelization factor. Subse-
quently, TaskProf2 recomputes the parallelism (line 16 in
Figure 6) and repeats the above process until either the antic-
ipated parallelism is reached or the work performed by every
node on the critical path is less than the tasking overhead
threshold (line 7 in Figure 6). If the anticipated parallelism
is not achieved when our algorithm terminates, it indicates
that the program does not have sufficient parallelism for a
given input. TaskProf2 outputs the set of regions that were
considered in each iteration as the regions that need to be
optimized to improve the parallelism of the program (line 20
in Figure 6).

492

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 function WhatIfAnalyses(T , ap, p f , k)

2 reдions ← ∅

3 < w, s, l , t >← ComputeProfile(T)

4 < smax , r >← MaxStepOnCritPath(l)

5 tt ← k ∗ AvgTaskingOverhead(T)

6 cp ← w/s

7 while (cp < ap) ∧ (smax > tt) do

8 foreach N in bottom-up traversal of T do

9 Sr ← {S |(S ∈ ChildNodes(N) ∧ S ∈ r)}

10 foreach S ∈ Sr do

11 S .w ← Max(tt , S .w/p f)

12 end

13 ⟨N .s,N .l⟩ ← SerialWork(N)

14 end

15 reдions ← reдions ∪ r

16 cp ← w/T .s

17 < smax , r >← MaxStepOnCritPath(T .l)

18 end

19 AggregatePerSpawnSite(T)

20 return reдions

Figure 6. Algorithm to compute regions that matter in in-
creasing parallelism using what-if analyses on the perfor-
mancemodelT . The user specifies the anticipated parallelism
(ap), parallelization possible for the regions (p f), and a task
overhead threshold (k). The function MaxStepOnCritPath

returns the step node that performs the highest work on the
critical path and the corresponding static program region.
Here, smax refers to the step node and the work performed
by it. AvgTaskingOverhead computes the average tasking
overheadś ratio of the total tasking overhead and the num-
ber of async nodes in T . The function ChildNodes returns
the immediate children of the input node N .

5 Differential Performance Analysis

Even when the program has sufficient parallelism and low
tasking overheads, a parallel program execution can fail to
achieve the maximum possible speedup on a given machine.
Typically, this behavior is attributed to secondary effects
of parallel execution. In contrast to logical parallelism, sec-
ondary effects can be specific to a hardware configuration.
Moreover, it can change across executions on the same ma-
chine. For example, when multiple parallel tasks simultane-
ously access distinct data in the same cache block (i.e. false
sharing), cache invalidations will reduce the speedup. To
observe this behavior, two such tasks have to be scheduled
to execute at the same time in the execution.
Differential analysis usingwork inflation.Weobserve

that our performance model can be used to identify static re-
gions of the program experiencing secondary effects. When
a region is experiencing secondary effects, it performs more

work in the parallel execution compared to an oracle execu-
tion [3, 43, 51]. The performance model for a task parallel
execution on a multi-core machine captures fine-grained
work information. If we construct a performance model for
an oracle execution, then we can perform a fine-grained
comparison of the two performance models.

The execution of a task parallel program on a single core
can be considered as an oracle execution because each task
would execute without any interference from other tasks.
In a race-free program, the DPST and the series-parallel
relationships encoded by the DPST in the performancemodel
remain unchanged irrespective of the number of cores used
for execution. Only the work information associated with
the step nodes will differ between the performance model of
the execution on multiple cores and that of the execution on
a single core. Hence, our differential analyses performs fine-
grained comparison of two performance models to isolate
regions likely experiencing secondary effects.
Use of multiple metrics. Apart from measuring work

done in hardware execution cycles, TaskProf2 can mea-
sure any metric that is supported on the machine. For in-
stance, it can identify regions experiencing true or false shar-
ing by measuring the number of cache hits in the modified
state with each step node (e.g., using the HITM performance
counter) [21, 44]. It can identify regions experiencing re-
duced locality in shared caches due to parallel execution by
measuring last level cache misses. Some regions can perform
a large number of remote memory accesses due to the lack
of affinity between the processor producing the data and
the one using it. TaskProf2 can identify such regions by
measuring accesses to remote DRAM.
TaskProf2’s differential analysis constructs two perfor-

mance models Ð one for the oracle execution and other for
the parallel execution Ð for multiple metrics of interest. It
has to execute the program twice for each metric of inter-
est to construct the performance model. It aggregates the
information about inflation in the metric of interest to static
program regions. Figure 1(e) presents the differential anal-
ysis profile for the program in Figure 1(a). In Figure 1(e),
our profiler has compared the performance model for the
parallel execution with the oracle execution on four distinct
metrics of interest. Figure 1(e) clearly shows that program is
experiencing significant work and HITM inflation with static
program region L5-L9, which provides information about
concrete regions to explore to address secondary effects.
The programmer can also guide our differential analysis by
choosing appropriate metrics of interest and by tailoring the
configuration (e.g., by choosing the number for threads).
Which regions should one focus on? The programmer

should focus on regions that experience significant inflation
with a metric of interest and perform a reasonable fraction of
the total work or the work on the critical path. If a region ex-
periences significant inflation with somemetric but performs
very little work or serial work, then it likely will not affect

493

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

Table 1. Applications used in our evaluation. We list the
initial speedup on a 16-core machine, the logical parallelism,
total tasking overhead in the program in contrast to total
useful work, the number of regions reported by our what-if
analyses to increase the parallelism to 128, and the inflation
in work in the entire program due to parallel execution.

Application Initial

speedup

Parallelism Tasking

overhead

of regions

reported

Work

inflation in

cycles

MILCmk 2.20X 44.21 41.90% 3 3.00X

LULESH 4.17X 43.01 7.37% 2 4.19X

compSort 5.80X 29.11 2.87% 2 1.28X

integerSort 4.93X 34.27 8.95% 2 1.16X

remDups 8.59X 48.86 2.04% 1 1.08X

dictionary 8.54X 41.94 2.49% 1 1.19X

suffixArray 2.15X 6.13 6.80% 3 1.15X

BFS 6.77X 24.19 3.08% 3 1.22X

maxIndSet 8.52X 27.24 7.17% 2 1.27X

maxMatching 9.39X 46.57 7.31% 1 1.23X

minSpanForest 6.43X 29.02 2.19% 1 1.28X

spanForest 7.17X 36.31 6.06% 1 1.41X

convexHull 8.14X 78.90 3.71% 0 1.59X

nearestNeigh 4.54X 17.83 7.09% 4 1.45X

delTriang 5.95X 57.55 7.92% 1 1.38X

delRefine 7.06X 51.50 8.83% 1 1.42X

rayCast 9.36X 51.44 20.83% 1 1.22X

nBody 12.26X 126.69 16.60% 1 2.12X

blackscholes 7.70X 40.03 1.02% 2 1.02X

bodytrack 6.32X 31.95 2.71% 2 1.16X

fluidanimate 10.41X 64.97 2.41% 1 1.02X

streamcluster 12.28X 76.28 9.17% 5 1.47X

swaptions 12.24X 74.17 47.27% 0 1.39X

the speedup of the program. Hence, TaskProf2’s differential
analysis also reports the percentage of the total work and
the percentage fraction of the serial work performed by the
region experiencing inflation with a metric of interest.

6 Experimental Evaluation

We evaluate TaskProf2’s effectiveness in identifying var-
ious bottlenecks (serialization, tasking overheads, and sec-
ondary effects), and regions that matter in improving par-
allelism. We also describe our experience with three other
tools: Coz [17], Intel Advisor [14], and Intel Vtune [15].

6.1 Prototype and Methodology

TaskProf2 supports task parallel programs that use the Intel
Threading Building Blocks (TBB) library [16]. It consists of
a profiler runtime that performs both offline and on-the-fly
parallelism computation, an extended TBB library that calls
the profiler runtime, and analysis tools to perform what-
if and differential analyses. It uses hardware performance
counters to perform fine-grained measurement of various
metrics. The prototype can use any available hardware per-
formance counter: dynamic instructions, execution cycles,
HITM events, local and remote DRAM accesses, last level
cache misses, and floating point operation cycles.
Methodology and setup.We performed all experiments

on a 16-core dual-socket Intel x86-64 2.1Ghz Xeon server

with 64 GB RAM and hyper-threading disabled. It has a
32KB data cache, 32KB instruction cache, 256KB L2 cache,
and 20MB L3 cache. Each cache line is 64 bytes. We run
each application five times while performing speedup exper-
iments and consider the average execution time. To perform
what-if analyses, we use 128 for both anticipated parallelism
and possible parallelization because we want the application
to have large enough parallelism to obtain scalable speedup
on a machine with a large number of cores. We use 10×
the average tasking overhead (k = 10 in Figure 6) as the
tasking overhead threshold [59]. TaskProf2’s profile execu-
tion is 2.69× slower on average when compared to parallel
execution without any profiling. System calls that read hard-
ware performance counters are the major component of this
overhead. The resident memory overhead is 10%.
Applications.We used twenty-three applications to eval-

uate the prototype: MILCmk and LULESH applications from
the Coral benchmark suite [1], sixteen applications from the
Problem Based Benchmark Suite (PBBS) [62], and five TBB
applications from the Parsec benchmark suite [5]. MILCmk
and LULESH applications were originally written in OpenMP.
The PBBS applications were written in Cilk. We converted
them to use the Intel TBB library. The prototype, applications,
and evaluation data are available open source [71].

6.2 Effectiveness in Identifying Bottlenecks

Table 1 provides a summary of our results when we used the
profiler with twenty-three applications.
Regions identified by what-if analyses. The logical

parallelism in all these applications is less than 128, which
is the anticipated parallelism for our experiments. The pro-
totype’s what-if analyses identified regions that need to be
parallelized to increase the parallelism to 128 in all except
two applications. The prototype did not identify any region
in convexHull and swaptions since parallelizing regions on
the critical path would increase tasking overhead of the pro-
gram beyond the threshold. Hence, these two applications
do not have sufficient parallelism for execution on a 128-core
machine for the given input.
Programs with tasking overheads. Among the twenty

three applications, we can observe that four applications
have relatively high tasking overheads (> 10%) in Table 1.
TaskProf2 helped us pinpoint the exact spawn sites expe-
riencing tasking overhead in all four applications. We de-
signed changes to reduce the tasking overhead in three of
them, which we describe below in application case studies.
We were unable to reduce the tasking overhead in rayCast

because the computation to determine the cut-off was closely
intertwined with actual computation and it was not straight-
forward to reduce the tasking overheads.
Programs with secondary effects. Table 1 also reports

the inflation in total work. MILCmk and LULESH are perform-
ing 3× and 4.19× more work in parallel execution compared

494

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Parallel
-ism

44.21

32.83

33.55

30.29

Program

veq.c:28

vpeq.c:28

vmeq.c:23

Location

(a) Initial parallelism profile

Tasking
overhead

Tasking overhead : 41.9%

44.64

18.92

15.63

0.01

Parallel
-ism

89.89

32.83

33.55

30.29

Program

veq.c:28

vpeq.c:28

vmeq.c:23

Location

(b) What-if analyses regions and what-if profile

Parallel
-ism

46.84

64.02

30.65

19.95

Program

funcs.c:2

veq.c:28

vmeq.c:23

Location

(c) Final parallelism profile

Tasking
overhead

Tasking overhead : 8.57%

37.28

17.81

15.01

0.01

… … … … … …

… …

Parallel
factor

128funcs.c:81-91

Region

128funcs.c:60-67

128funcs.c:47-54

Inflation
cycles

Inflation
loc HITM

Region

(d) Intial differential profile

Inflation
rem HITM

Inflation
rem DRAM

veq.c:28-35 3.8X 208X 553X

vmeq.c:20-22

vpeq.c:20-27

Program 3.0X 232X 100.4X

3.7X

3.6X

106.9X

127X

302X

321.4X

84.8X

378X

361X

412X

Inflation
cycles

Inflation
loc HITM

Region

(e) Differential profile after optimization

Inflation
rem HITM

Inflation
rem DRAM

veq.c:28-35 1.4X 23.8X 22X

vmeq.c:20-22

vpeq.c:20-27

Program 1.3X 83.4X 51.7X

1.3X

1.3X

67.6X

37.2X

24.8X

15X

29.6X

30.7X

57X

23.4X
… … … … … … … … … …

Figure 7. Profiles for MILCmk. (a) Initial parallelism profile.
(b) Regions identified and the what-if profile. (c) Parallelism
profile after concretely parallelizing the reported regions and
reducing the tasking overhead. (d) Initial differential profile
that reports the inflation in cycles, local HITM, remote HITM,
and remote DRAM accesses. (e) Differential profile after ad-
dressing secondary effects using TBB’s affinity partitioner.
Here, we report only the top three spawn sites.

to an oracle execution, respectively. Using differential anal-
ysis, we were able to precisely locate regions causing high
work inflation. Subsequently, we designed optimizations to
reduce this inflation (Section 6.3).
Overall, we increased the speedup in nine applications.

TaskProf2 helped us identify bottlenecks and regions that
would help in improving parallelism. TaskProf2 does not
perform automatic parallelization. It does not automatically
address these bottlenecks. The programmer has to concretely
optimize the regions reported by TaskProf2. It may not be
feasible to optimize all regions reported by TaskProf2 (e.g.,
due to dependencies). We designed concrete techniques to
optimize the identified regions in nine applications and in-
crease the speedup. We also ensured that the optimizations
improved the speedup for all the available inputs.

6.3 Improving the Speedup of Applications

We describe our experience addressing serialization bottle-
necks, tasking overheads, and secondary effects.
Increasing the speedup of MILCmk. The MILCmk pro-

gram is a scientific application from the LLNL Coral bench-
mark suite with 5000 lines of optimized code. This applica-
tion had a speedup of 2.2× on a 16-core machine. Figure 7(a)
shows the parallelism profile reported by our profiler, which
reports that the program has high tasking overheads (42%
of total useful work) and sufficient parallelism (44.21). The
program is spending one-third of the execution time or-
chestrating parallel execution. The profiler identifies six
parallel_for calls that together account for almost 98%
of the tasking overhead. Figure 7(a) shows top three calls
due to space constraints. We carefully analyzed the program
and increased the cut-off points for these six parallel_for

Inflation
cycles

Inflation
LLC miss

Region

(a) Intial differential profile

Inflation
loc DRAM

Inflation
rem DRAM

llesh.c:2823 5.56X 236X 65X

llesh.c:2847

llesh.c:3216

Program 4.19X 95.9X 1.9X

5.12X

5.19X

194X

129X

106X

93.6X

143X

218X

201X

92.5X

Inflation
cycles

Inflation
LLC miss

Region

(b) Differential profile after optimization

Inflation
loc DRAM

Inflation
rem DRAM

llesh.c:2823 2.34X 23.8X 24X

llesh.c:2847

llesh.c:3216

Program 2.12X 18.2X 1.48X

1.74X

1.94X

67.6X

32.4X

24.8X

11X

22.8X

43.6X

35.9X

14.3X
… … … … … … … … … …

Figure 8. (a) The differential profile for LULESH showing
the inflation in cycles, last level cache misses, local DRAM,
and remote DRAM accesses. (b) The profile after reducing the
secondary effects at lulesh.c:2823 and lulesh.c:2847.

calls until the tasking overhead was less than 10%. As a result,
the speedup increased from 2.2× to 5.51×.
We subsequently used TaskProf2’s what-if analyses to

increase the parallelism to 128. Figure 7(b) presents the three
regions reported by the profiler’s what-if analyses and the
what-if parallelism after optimizing these regions. When we
carefully examined these reported regions, a part of each
reported region was serially computing the sum of a large
array of numbers. We parallelized a part of these reported
regions with the parallel_reduce function in the Intel TBB
library, which increased the parallelism to 46.84 and the
speedup to 5.76×. Figure 7(c) reports the parallelism profile
after parallelizing these three regions.

Subsequently, we used the profiler’s differential analyses
to check if the application is experiencing secondary effects.
Figure 7(d) shows the differential profile, which reports sig-
nificant inflation with four events (cycles, local HITM events,
remote HITM events, and remote DRAM accesses) in the par-
allel execution when compared to an oracle execution. The
differential analysis profile in Figure 7(d) shows the inflation
in top three parallel_for regions. On examining them, we
found that all the parallel_for calls were being made mul-
tiple times in a sequential loop. An inflation in remote DRAM
accesses in the differential analysis profile made us suspect
that TBB’s work stealing scheduler was likely mapping tasks
operating on the same data items from multiple invocations
of the parallel_for to different processors. We explored
techniques to maintain affinity between the data and the
processor performing computations on the same data over
multiple invocations of a parallel_for call. We used TBB’s
affinity partitioner that provides best-effort affinity by map-
ping the iterations of parallel_for to the same thread that
executed it previously. We changed the six parallel_for

calls to use TBB’s affinity partitioner. Figure 7(e) shows the
differential profile after this optimization. It shows a signif-
icant decrease for all the four performance counter events.
The profile still shows some inflation because the affinity
partitioner is a best-effort technique. After this optimization,
the speedup of the program improved from 5.76× to 5.98×.
In summary, the profiler’s what-if analyses and differential
analyses helped us increase the speedup from 2.2× to 5.98×.

495

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

Parallel
-ism

29.02

62.98

59.12

55.67

Program

sort.h:127

spec.h:82

sort.h:179

Location

(a) Initial parallelism profile

Tasking
overhead

Tasking overhead : 2.19%

0.37

0.34

20.77

0.01

II. minSpanningForest

Parallel
-ism

52.5

62.98

59.12

55.67

Program

sort.h:127

relax.c:87

sort.h:179

Location

(b) What-if analyses regions and what-if profile

Parallel
-ism

50.46

50.75

56.74

63.28

Program

spec.h:82

sort.h:81

gIO.h:167

Location

(c) Final parallelism profile

Tasking
overhead

Tasking overhead : 5.06%

0.36

31.9

1.15

0.01

Parallel
factor

128sort.h:132-143

Region

… … … … … …
… …

Parallel
-ism

126.69

38.14

37.94

45.63

Program

CK.C:300

CK.C:289

CK.C:675

Location

(a) Initial parallelism profile

Tasking
overhead

Tasking overhead : 16.6%

0.01

32.25

31.96

0.02

I. nBody

Parallel
-ism

204.79

38.14

37.94

83.37

Program

CK.C:300

CK.C:289

CK.C:675

Location

(b) What-if analyses regions and what-if profile

Parallel
-ism

169.06

18.64

17.36

92.97

Program

CK.C:300

CK.C:289

CK.C:675

Location

(c) Final parallelism profile

Tasking
overhead

Tasking overhead : 4.65%

0.05

23.94

21.92

0.01

… … … … … …
… …

Parallel
factor

128CK.C:663-675

Region

Figure 9. The initial parallelism profile with tasking over-
heads, the regions identified using the what-if analyses, and
the parallelism profile after parallelizing the regions reported
for two applications: nBody, and minSpanningForest.

Increasing the speedup of LULESH. LULESH [33] is an
application from LLNL that is widely used to model hydrody-
namics in scientific applications. The program had a speedup
of 4.17× on a 16-core machine. The parallelism of the pro-
gram was 43.01. We wanted to understand the reason be-
hind low speedup even when the program has a parallelism
of 43.01. We profiled the program with TaskProf2’s dif-
ferential analysis. Figure 8(a) shows the differential profile
generated by it. Overall, the program has 4.19× inflation in
cycles when compared to serial execution. The profile also
has significant inflation in last level cache misses and remote
memory accesses. The profile highlights two parallel_for
calls (llesh.c:2823 and llesh.c:2847 in Figure 8(a)) having
high inflation in last level cache (LLC) misses and remote
DRAM accesses. Further, these parallel_for calls were per-
forming almost 30% of the work on the critical path. Since
these regions had high inflation in LLC misses, we checked
whether the working set of the program was larger than
the LLC during parallel execution. We noticed that both the
parallel_for regions were performing computations on
two large arrays. Further investigation revealed that access-
ing these arrays in parallel is the root cause of significant
LLC misses. We rearranged the computation to reduce the
working set size while ensuring that the transformation was
correct. Figure 8(b) shows the reduction in inflation for all
events after this optimization. The optimization improved
the speedup of the program to 5.86×.
Increasing the speedup of nBody. The nBody applica-

tion takes an array of 3-D points as input and computes
the gravitational force vector of each point due to all other
points. The initial speedup on a 16-core machine was 12.26×.
Unsurprisingly, our prototype showed that the program has
high parallelism (126.69 in Figure 9(I)(a)). However, our pro-
totype also reports a relatively high tasking overhead (16.6%
of total useful work in Figure 9(I)(a)) and three spawn sites

Parallel
-ism

74.17

74.21

38.74

Program

HJM_Securities.cpp:297

HJM_SimPath.cpp:135

Location

(a) Initial parallelism profile

Tasking
overhead

Tasking overhead : 47.27% of total work

82.65

17.34

0.01

(b) Final parallelism profile

Parallel
-ism

49.83

48.39

18.29

Program

HJM_Securities.cpp:297

HJM_SimPath.cpp:135

Location
Tasking

overhead

Tasking overhead : 6.98% of total work

47.2

52.78

0.02

Figure 10. (a) The parallelism profile for swaptions that
highlights high tasking overhead. (b) The profile after re-
ducing the tasking overhead by increasing the grain size at
HJM_SimPath.cpp:135.

corresponding to parallel_for calls accounting for 90% of
this tasking overhead. The profile in Figure 9(I)(a) shows two
such parallel_for calls at CK.C:300, CK.C:289 (we omit
the third one due to space constraints). On careful exami-
nation of the code, we observed that these parallel_for
calls were nested within other parallel tasks and they were
using TBB’s default partitioner, which was partitioning the
iteration sub-optimally. We changed the code to use a simple
partitioner and increased the cut-off until there was reduc-
tion in the tasking overhead. Eventually, we reduced the
tasking overhead to 4% and the speedup increased to 13.88×.

Subsequently, the prototype’s what-if analyses identified a
region of the code that when parallelized can increase the par-
allelism to 204.79 (see Figure 9(I)(b)). It corresponded to the
body of a parallel_for call at CK.C:675, which performs
80% of the work on the critical path (see Figure 9(I)(a)). We
decreased the cut-off to reduce the serial work done by the
body of the parallel_for call at CK.C:675. Figure 9(I)(c) re-
ports that the parallelism of the program improved to 169.06
and the tasking overhead reduced to 4.65% (Figure 9(I)(c)).
The speedup of the program improved from 12.26× to 14.11×.
In summary, we had to increase the cut-off for some spawn
sites and decrease the cut-off with a few others to improve
speedup. TaskProf2 helped us resolve the trade-off between
parallelism and tasking overhead.
Increasing the speedup of minSpanningForest. This

program in the PBBS suite is a parallel implementation of
Kruskal’s minimum spanning tree algorithm. The initial
speedup of the program is 6.43×. Figure 9(II)(a) presents
the parallelism profile that reports the program has a paral-
lelism of 29.02. Our what-if analyses identified one region
that when parallelized can increase parallelism to 52.5 (Fig-
ure 9(II)(b)) without increasing tasking overheads. The re-
ported region was partitioning edges into multiple blocks
sequentially. Since there were no data dependencies, we de-
termined that the partitioning could be done in parallel. We
parallelized it by recursively spawning tasks in parallel. After
this optimization, the parallelism of the program increased
to 50.46 (Figure 9(II)(c)) and the speedup of the program
increased to 9.8×.
Increasing the speedup of swaptions. This program

from the Parsec benchmark suite has an initial speedup

496

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

of 12.25× on our 16-core machine. Although this program
has relatively higher speedup, the profiler reported that the
program has a tasking overhead of 47.27% (Figure 10(a)).
The parallelism profile highlights the parallel_for call at
HJM_SimPath.cpp:135, which accounts for 80% of the task-
ing overhead. On examining the code, we found that the
cut-off for recursive decomposition was too small. We in-
creased the cut-off with the help of the profiler until the over-
all tasking overhead reduced to less than 10%. Figure 10(b)
presents the parallelism profile after reducing the tasking
overhead. The speedup of the program increased to 14.16×.
The prototype’s what-if analyses subsequently reported that
the program cannot be parallelized any further without in-
creasing the tasking overhead.
Other applications. Similar to minSpanningForest, our

profiler’s what-if analyses identified serialization bottlenecks
in four other applications. We designed concrete paralleliza-
tion strategies for the regions reported and increased the
speedup from 6.77× to 8.82× in breadthFirstSearch, from
7.17× to 8.27× in spanningForest, from 2.15× to 7.58× in
suffixArray, and from 4.9× to 6.32× in comparisonSort.
Overall, in these four applications, the regions reported by
our what-if analyses were precisely the regions that we even-
tually parallelized.

6.4 Evaluation with Other Profilers

To highlight the effectiveness of TaskProf2, we also evalu-
ated all nine applications that we sped up with three other
profilers: Coz [17], Intel Advisor [14], and Intel Vtune Am-
plifier [15]. Our evaluation data is available online [72].

Evaluation with Coz. Coz quantifies the amount of pos-
sible speedup when a line of code is optimized. The program-
mer is expected to annotate the code with progress points
for throughput or latency. It provides three modes: (1) end-
to-end sampling, (2) latency profiling, and (3) throughput
profiling. Typically, a programmer does not a priori know
the bottlenecks. Hence, we ran all nine applications with
Coz without any progress points. After we ran each applica-
tion numerous times (at least 20 to 80 times), Coz identified
a progress point that will either improve the speedup or
cause slowdowns by 1-6% except with swaptions where it
reported a maximum speedup of 30%. When we annotated
these regions with latency and throughput progress points,
Coz also reported very little speedup. It was also not useful
feedback as we could not optimize those regions. Moreover,
we observed that the speedup estimates from Coz can vary
depending on the choice of progress points. We found it
difficult to identify appropriate progress points to obtain
consistent speedup estimates with Coz [69]. As we had al-
ready identified regions that matter with TaskProf2 and we
are interested in reducing the execution time of the program,
we used latency progress points in Coz for the regions identi-
fied by our profiler. Strangely, the latency profile reported a
slowdown for all the annotated regions [70]. Finally, we used

throughput progress points with the regions reported by
our profiler. Out of the nine applications, Coz with through-
put progress points reports a possible speedup with five ap-
plications (i.e., breadthFirstSearch, minSpanningForest,
comparisonSort, suffixArray, and nBody). The speedup
reported was too pessimistic with suffixArray. Coz re-
ported a speedup of 20% in the best case. However, we im-
proved the speedup by 352% when we concretely parallelized
it. The speedup estimates by Coz appear reasonable when
the progress point is within loops and is frequently executed
and also matters in improving whole-program performance
(e.g., nBody) . Coz did not report any throughput profile for
the spanningForest application even after executing it nu-
merous times. Coz did not provide useful information with
speedup estimates for addressing secondary effects (MILCmk,
LULESH, and swaptions). We also had to run the program
numerous times to get throughput profiles, which can be
slow and time-consuming.
Evaluation with Intel Advisor. Intel Advisor aims to

provide feedback on threading bottlenecks. It consists of a
survey analysis that identifies where the program spends
its time. Subsequently, programmers can use annotations to
check the suitability of a region of code for optimization to
address load imbalance, lock contention, or runtime over-
heads. Similar to our Coz experiments, we first ran the survey
analysis for each of the nine applications and identified the
regions reported by it. We used Intel Advisor’s annotations
to mark these regions for optimization. Intel Advisor high-
lighted serial and parallel loops in the program.We optimized
some of these regions but it did not increase the speedup.
We could not identify a way to parallelize other loops. Also,
these were not the regions reported by TaskProf2.

Subsequently, we used the regions identified by TaskProf2

for annotations. We used Intel Advisor’s łcheck suitabilityž
analysis, which estimates the improvement in speedup of
the region and the entire program. Of the seven applica-
tions that had parallelism bottlenecks, Intel Advisor reports
a speedup in the range 28%-65% for four applications [72]. If
the annotations are within loops and are hot-spots, Intel Ad-
visor predicts a reasonable speedup (e.g., nBody application).
For the remaining three applications Intel Advisor reports a
nominal speedup in the range of 1%-6% [72]. These programs
contained recursive functions in the annotated regions. Over-
all, we found that Intel Advisor’s speedup prediction is useful
if the annotated regions are within loops and are also hot-
spots in the program. Its use is limited in identifying regions
that one should explore.
Evaluation with Intel VTune. Intel VTune Amplifier is

a comprehensive commercial profiler. It provides feedback
on frequently executed regions and regions experiencing
scheduling overheads or secondary effects. VTune identified
that six of our nine applications have low parallelism based
on CPU utilization and highlighted the hot-spots. Those re-
gions were primarily parallel_for parts of the code and

497

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

were not useful in improving the speedup. We used VTune’s
micro-architectural analysis which reported that five appli-
cations were experiencing secondary effects of execution.
While the analysis highlighted various causes for the sec-
ondary effects in the programs, it did not provide specific
code regions that were experiencing them. VTune identi-
fied scheduling overheads in two of the three applications
identified by TaskProf2. It did not identify the scheduling
overhead in nBody. Overall, we found VTune is a good tool
to identify hot-spots, secondary effects, and scheduling over-
heads. However, it does not report whether optimizing these
hot-spots matter in improving parallelism.

7 Related Work

Profiling parallel programs is a widely researched topic. In
this section, we compare the most closely related work.
Serialization and tasking overheads tools. Prior re-

search on profiling task parallel programs has explored quan-
tifying the parallelism in the program to identify serialization
bottlenecks. CilkView [26], CilkProf [59] and TaskProf [68]
compute the parallelism of task parallel programs and at-
tribute the parallelism to the static spawn sites in the pro-
gram. Our on-the-fly algorithm resembles CilkProf’s algo-
rithm. Unlike CilkProf that requires serial execution, our pro-
file execution runs in parallel. OMP-WhIP [7] computes the
parallelism in OpenMP programs. Our prior work, TaskProf
and OMP-WhIP, can estimate the improvement in paral-
lelism when the programmer annotates a region. However,
they do not consider tasking overheads. Numerous approaches
have explored profiling and compiler techniques to identify
task granularity cut-off points in isolation [25, 30, 56, 57].

Improving parallelism or addressing runtime overheads in
isolation is not sufficient to improve the speedup. The user
has to carefully balance parallelism and the cost of creating
tasks to obtain good performance.
Performance estimation tools. Some early tools iden-

tify functions that execute on the critical path [6, 48, 53].
Other early tools have also proposed metrics to estimate
improvements in execution time on optimizing certain func-
tions [27, 48]. Kremlin [24] and Kismet [32] quantify the par-
allelism in a sequential program and estimate the speedup
that can be obtained from parallelization. Coz [17] quantifies
the effect of optimizing a line of code by inserting delays
in concurrently executing threads. It can be considered as
a kind of what-if analysis. We found that Coz reported pes-
simistic estimates of speedup with task parallel programs
and it is challenging to identify where to optimize. Intel
Advisor [14] is a useful commercial tool in estimating the
speedup of a piece of annotated code and the entire program
with multiple programming models. Similar to Coz, figuring
out where to annotate is challenging with Intel Advisor.
Tools identifying secondary effects.Techniques to iden-

tify secondary effects in parallel program execution have

been widely studied. They include tools to detect cache con-
tention [8, 10, 21, 31, 36, 37, 44, 49, 65, 74], identify data local-
ity issues [38ś40, 42], and find bottlenecks due to NUMA [41,
46]. Unlike our profiler, these tools are tailored to detect
specific kinds of secondary effects. Further, they either use
binary instrumentation or sampling. TaskProf2 does not ex-
plicitly sample while performing measurements (PMU units
employ precise event sampling).
Differential profiling. Prior profilers for parallel pro-

grams have also compared profiles from multiple executions
using expectations [28, 61]. They classify anything that dif-
fers from expected values as bottlenecks or performance
issues [13, 47]. SCAAnalyzer [43] performs sampling and
compares latencies of data objects from two executions to
identify memory scalability bottlenecks. They do not provide
feedback on specific regions experiencing secondary effects.

Work inflation. There are tools that measure work in-
flation to identify if the program is experiencing secondary
effects [3, 51, 58]. But these tools neither pinpoint parts of the
program with secondary effects nor its relation to program
parallelism. In contrast, our differential analyses can high-
light regions that are experiencing any type of secondary
effect and probable reasons for them by examining inflation
in various metrics of interest.
Performance modeling. Profilers have explored perfor-

mance modeling to predict performance on a large number
of cores [9, 55] and identify critical paths in parallel pro-
grams [4, 60]. The Roofline model is a visual performance
model to identify the upper bound of a kernel’s performance
on a given machine by measuring metrics such as float-
ing point performance, off-chip and on-chip memory traf-
fic [29, 45, 66]. However, these approaches do not provide
feedback on concrete program regions to focus on.

8 Conclusion

TaskProf2 identifies program regions with serialization bot-
tlenecks, tasking overheads, and significant inflation in work
due to secondary effects with the help of a novel perfor-
mance model of a task parallel execution. This performance
model consists of series-parallel relationships between task
fragments and fine-grained measurement of computation. It
enables TaskProf2 to report regions that matter in increas-
ing parallelism using what-if analyses and identify regions
that experience secondary effects of execution using differen-
tial analyses. TaskProf2 can enable effective performance
debugging of task parallel programs. We would like to see
the integration of TaskProf2 into widely used profilers.

Acknowledgments

We thank our shepherd Ayal Zaks and the anonymous re-
viewers for their feedback. This paper is based on work
supported in part by NSF CAREER Award CCFś1453086.

498

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

References
[1] [n. d.]. Coral benchmarks. https://asc.llnl.gov/CORAL-benchmarks/.

[2] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The Data

Locality of Work Stealing. In Proceedings of the Twelfth Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA). 1ś12.

[3] U. A. Acar, A. Charguéraud, and M. Rainey. 2017. Parallel Work

Inflation, Memory Effects, and their Empirical Analysis. ArXiv e-prints

(2017).

[4] Cedell Alexander, Donna Reese, and James C. Harden. 1994. Near-

Critical Path Analysis of ProgramActivity Graphs. In Proceedings of the

Second International Workshop on Modeling, Analysis, and Simulation

On Computer and Telecommunication Systems (MASCOTS). 308ś317.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques (PACT). 72ś81.

[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk:

An Efficient Multithreaded Runtime System. In Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming (PPOPP). 207ś216.

[7] Nader Boushehrinejadmoradi, Adarsh Yoga, and Santosh Nagarakatte.

2018. A Parallelism Profiler with What-if Analyses for OpenMP Pro-

grams. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage, and Analysis (SC). 16:1ś16:14.

[8] Bevin Brett, Pranith Kumar, Minjang Kim, and Hyesoon Kim. 2013.

CHiP: A Profiler to Measure the Effect of Cache Contention on Scala-

bility. In Proceedings of the 2013 IEEE 27th International Symposium on

Parallel and Distributed ProcessingWorkshops and PhD Forum (IPDPSW).

1565ś1574.

[9] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf.

2013. Using Automated Performance Modeling to Find Scalability

Bugs in Complex Codes. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis (SC).

45:1ś45:12.

[10] Milind Chabbi, Shasha Wen, and Xu Liu. 2018. Featherlight On-the-

fly False-sharing Detection. In Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP).

152ś167.

[11] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-oriented Approach to Non-uniform

Cluster Computing. In Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA). 519ś538.

[12] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H.

Randall, and Andrew F. Stark. 1998. Detecting Data Races in Cilk

Programs That Use Locks. In Proceedings of the 10th ACM Symposium

on Parallel Algorithms and Architectures (SPAA). 298ś309.

[13] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dot-

senko. 2007. Scalability Analysis of SPMD Codes Using Expectations.

In Proceedings of the 21st Annual International Conference on Supercom-

puting (ICS ’07). 13ś22.

[14] Intel Corporation. 2019. Intel Advisor. Retrieved March 20, 2019 from

https://software.intel.com/en-us/advisor

[15] Intel Corporation. 2019. Intel VTune Amplifier. Retrieved March 20,

2019 from https://software.intel.com/en-us/intel-vtune-amplifier-xe

[16] Intel Corporation. 2019. Official Intel(R) Threading Building Blocks

(Intel TBB) GitHub repository. Retrieved Apr 5, 2019 from https:

//github.com/01org/tbb

[17] Charlie Curtsinger and Emery D. Berger. 2015. Coz: Finding Code That

Counts with Causal Profiling. In Proceedings of the 25th Symposium on

Operating Systems Principles (SOSP). 184ś197.

[18] Luiz DeRose, Bill Homer, and Dean Johnson. 2007. Detecting Appli-

cation Load Imbalance on High End Massively Parallel Systems. In

Proceedings of the 13th International Euro-Par Conference on Parallel

Processing (Euro-Par). 150ś159.

[19] Kristof Du Bois, Stijn Eyerman, Jennifer B. Sartor, and Lieven Eeck-

hout. 2013. Criticality Stacks: Identifying Critical Threads in Parallel

Programs Using Synchronization Behavior. In Proceedings of the 40th

Annual International Symposium on Computer Architecture (ISCA). 511ś

522.

[20] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeck-

hout. 2013. Bottle Graphs: Visualizing Scalability Bottlenecks in Multi-

threaded Applications. In Proceedings of the 2013 ACM SIGPLAN In-

ternational Conference on Object Oriented Programming Systems Lan-

guages and Applications (OOPSLA). 355ś372.

[21] Ariel Eizenberg, Shiliang Hu, Gilles Pokam, and Joseph Devietti. 2016.

Remix: Online Detection and Repair of Cache Contention for the JVM.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). 251ś265.

[22] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. 2012. Speedup

Stacks: Identifying Scaling Bottlenecks in Multi-threaded Applications.

In Proceedings of the 2012 IEEE International Symposium on Performance

Analysis of Systems & Software (ISPASS). 145ś155.

[23] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In Proceedings

of the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation (PLDI). 212ś223.

[24] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and

Michael Bedford Taylor. 2011. Kremlin: Rethinking and Rebooting

Gprof for the Multicore Age. In Proceedings of the 32Nd ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI). 458ś469.

[25] Suyash Gupta, Rahul Shrivastava, and V Krishna Nandivada. 2017.

Optimizing Recursive Task Parallel Programs. In Proceedings of the

International Conference on Supercomputing (ICS). 11:1ś11:11.

[26] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. 2010.

The Cilkview Scalability Analyzer. In Proceedings of the Twenty-second

Annual ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 145ś156.

[27] Jeffrey K. Hollingsworth and Barton P. Miller. 1994. Slack: A New

Performance Metric for Parallel Programs. Technical Report. University

of Wisconsin-Madison.

[28] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jes-

persen, K. Taylor, and R. Biswas. 2010. Performance impact of resource

contention in multicore systems. In 2010 IEEE International Symposium

on Parallel Distributed Processing (IPDPS). 1ś12.

[29] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2014. Cache-aware

RooflineModel: Upgrading the Loft. IEEE Computer Architecture Letters

(2014), 21ś24.

[30] Shintaro Iwasaki and Kenjiro Taura. 2016. A Static Cut-off for Task

Parallel Programs. In Proceedings of the 2016 International Conference

on Parallel Architectures and Compilation (PACT). 139ś150.

[31] Sanath Jayasena, Saman Amarasinghe, Asanka Abeyweera, Gayashan

Amarasinghe, Himeshi De Silva, Sunimal Rathnayake, Xiaoqiao Meng,

and Yanbin Liu. 2013. Detection of False Sharing Using Machine Learn-

ing. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis (SC). 30:1ś30:9.

[32] Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford

Taylor. 2011. Kismet: Parallel Speedup Estimates for Serial Programs.

In Proceedings of the 2011 ACM International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA).

519ś536.

[33] Lawrence Livermore National Labs. 2018. Livermore Unstructured

Lagrangian Explicit Shock Hydrodynamics (LULESH). Retrieved No-

vember 17, 2018 from https://computation.llnl.gov/projects/co-design/

lulesh

499

https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/01org/tbb
https://github.com/01org/tbb
https://computation.llnl.gov/projects/co-design/lulesh
https://computation.llnl.gov/projects/co-design/lulesh

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Adarsh Yoga and Santosh Nagarakatte

[34] Doug Lea. 2000. A Java Fork/Join Framework. In Proceedings of the

ACM 2000 Conference on Java Grande (JAVA). 36ś43.

[35] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The

Design of a Task Parallel Library. In Proceedings of the 24th ACM SIG-

PLAN Conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA). 227ś242.

[36] Tongping Liu and Emery D. Berger. 2011. SHERIFF: Precise Detection

and Automatic Mitigation of False Sharing. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA). 3ś18.

[37] Tongping Liu, Chen Tian, Ziang Hu, and Emery D. Berger. 2014.

PREDATOR: Predictive False Sharing Detection. In Proceedings of the

19th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP). 3ś14.

[38] Xu Liu and John Mellor-Crummey. 2011. Pinpointing Data Local-

ity Problems Using Data-centric Analysis. In Proceedings of the 9th

Annual IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 171ś180.

[39] Xu Liu and John Mellor-Crummey. 2013. A Data-centric Profiler for

Parallel Programs. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis (SC).

28:1ś28:12.

[40] Xu Liu and John Mellor-Crummey. 2013. Pinpointing data locality

bottlenecks with low overhead. In 2013 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS). 183ś193.

[41] Xu Liu and John Mellor-Crummey. 2014. A Tool to Analyze the Per-

formance of Multithreaded Programs on NUMA Architectures. In

Proceedings of the 19th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP). 259ś272.

[42] Xu Liu, Kamal Sharma, and John Mellor-Crummey. 2014. ArrayTool: A

Lightweight Profiler to Guide Array Regrouping. In Proceedings of the

23rd International Conference on Parallel Architectures and Compilation

(PACT). 405ś416.

[43] Xu Liu and Bo Wu. 2015. ScaAnalyzer: A Tool to Identify Memory

Scalability Bottlenecks in Parallel Programs. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis (SC). 47:1ś47:12.

[44] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles

Pokam, Chris J. Newburn, and Joseph Devietti. 2016. LASER: Light,

Accurate Sharing dEtection and Repair. In 2016 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2016,

Barcelona, Spain, March 12-16, 2016. 261ś273.

[45] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and

Z. A. Matveev. 2017. Performance Analysis with Cache-Aware Roofline

Model in Intel Advisor. In 2017 International Conference on High Per-

formance Computing Simulation (HPCS). 898ś907.

[46] Collin McCurdy and Jeffrey Vetter. 2010. Memphis: Finding and fixing

NUMA-related performance problems on multi-core platforms. In

2010 IEEE International Symposium on Performance Analysis of Systems

Software (ISPASS). 87ś96.

[47] Paul E. McKenney. 1999. Differential Profiling. Software - Practice &

Experience (1999), 219ś234.

[48] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and T.

Torzewski. 1990. IPS-2: The Second Generation of a Parallel Program

Measurement System. IEEE Transactions on Parallel and Distributed

Systems (1990), 206ś217.

[49] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan,

Dutch T. Meyer, William Aiello, and Andrew Warfield. 2013. Whose

Cache Line is It Anyway?: Operating System Support for Live De-

tection and Repair of False Sharing. In Proceedings of the 8th ACM

European Conference on Computer Systems (EuroSys). 141ś154.

[50] Jungju Oh, Christopher J. Hughes, Guru Venkataramani, and Milos

Prvulovic. 2011. LIME: A Framework for Debugging Load Imbalance

in Multi-threaded Execution. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE). 201ś210.

[51] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F.

Prins. 2012. Characterizing and Mitigating Work Time Inflation in

Task Parallel Programs. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis (SC).

65:1ś65:12.

[52] OpenMP Architecture Review Board. 2015. OpenMP 4.5 Com-

plete Specification. http://www.openmp.org/wp-content/uploads/

openmp-4.5.pdf

[53] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 2000. On-

line Computation of Critical Paths for Multithreaded Languages. In

Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed

Processing (IPDPS). 301ś313.

[54] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection for

Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI).

531ś542.

[55] Patrick Reisert, Alexandru Calotoiu, Sergei Shudler, and Felix Wolf.

2017. Following the Blind Seer ś Creating Better Performance Models

Using Less Information. In Euro-Par 2017: Parallel Processing.

[56] Andrea Rosà, Eduardo Rosales, and Walter Binder. 2018. Analyzing

and Optimizing Task Granularity on the JVM. In Proceedings of the

2018 International Symposium on Code Generation and Optimization

(CGO). 27ś37.

[57] E. Rosales, A. Rosà, and W. Binder. 2017. tgp: A Task-Granularity

Profiler for the Java Virtual Machine. In 2017 24th Asia-Pacific Software

Engineering Conference (APSEC). 570ś575.

[58] Mark Roth, Micah Best, Craig Mustard, and Alexandra Fedorova. 2012.

Deconstructing the overhead in parallel applications. In Proceedings

- 2012 IEEE International Symposium on Workload Characterization,

IISWC 2012 (IISWC). 59ś68.

[59] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M.

Leiserson, and Charles E. Leiserson. 2015. The Cilkprof Scalability

Profiler. In Proceedings of the 27th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 89ś100.

[60] M. Schulz. 2005. Extracting Critical Path Graphs from MPI Appli-

cations. In 2005 IEEE International Conference on Cluster Computing.

1ś10.

[61] Martin Schulz and Bronis R. de Supinski. 2007. Practical Differential

Profiling. In Euro-Par 2007 Parallel Processing: 13th International Euro-

Par Conference, Rennes ,France , August 28-31, 2007. Proceedings. 97ś106.

[62] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,

Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan.

2012. Brief Announcement: The Problem Based Benchmark Suite.

In Proceedings of the 24th Annual ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 68ś70.

[63] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey.

2010. Scalable Identification of Load Imbalance in Parallel Executions

Using Call Path Profiles. In Proceedings of the 2010 ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (SC). 1ś11.

[64] Nathan R. Tallent and John M. Mellor-Crummey. 2009. Effective Per-

formance Measurement and Analysis of Multithreaded Applications.

In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP). 229ś240.

[65] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. 2018. Watching

for Software Inefficiencies with Witch. In Proceedings of the Twenty-

Third International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). 332ś347.

[66] Samuel Williams, Andrew Waterman, and David Patterson. 2009.

Roofline: An Insightful Visual Performance Model for Multicore Ar-

chitectures. Commun. ACM (2009), 65ś76.

500

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Parallelism-Centric What-If and Differential Analyses PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

[67] Adarsh Yoga and Santosh Nagarakatte. 2016. Atomicity Violation

Checker for Task Parallel Programs. In Proceedings of the 2016 In-

ternational Symposium on Code Generation and Optimization (CGO).

239ś249.

[68] Adarsh Yoga and Santosh Nagarakatte. 2017. A Fast Causal Profiler for

Task Parallel Programs. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE). 15ś26.

[69] Adarsh Yoga and Santosh Nagarakatte. 2019. Issue 103:Where to place

progress points. Retrieved Mar 28, 2019 from https://github.com/

plasma-umass/coz/issues/103

[70] Adarsh Yoga and Santosh Nagarakatte. 2019. Issue 104:Inconsistent

results for throughput and latency profiling. Retrieved Mar 28, 2019

from https://github.com/plasma-umass/coz/issues/104

[71] Adarsh Yoga and Santosh Nagarakatte. 2019. TaskProf2. Retrieved

Apr 5, 2019 from https://github.com/rutgers-apl/TaskProf2.git

[72] Adarsh Yoga and Santosh Nagarakatte. 2019. TaskProf2-Evaluation

data. Retrieved Apr 5, 2019 from https://github.com/rutgers-apl/

TaskProf2/tree/master/pldi_comparison_results

[73] Adarsh Yoga, SantoshNagarakatte, andAarti Gupta. 2016. Parallel Data

Race Detection for Task Parallel Programs with Locks. In Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (FSE). 833ś845.

[74] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,

and Saman Amarasinghe. 2011. Dynamic Cache Contention Detec-

tion in Multi-threaded Applications. In Proceedings of the 7th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments (VEE). 27ś38.

501

https://github.com/plasma-umass/coz/issues/103
https://github.com/plasma-umass/coz/issues/103
https://github.com/plasma-umass/coz/issues/104
https://github.com/rutgers-apl/TaskProf2.git
https://github.com/rutgers-apl/TaskProf2/tree/master/pldi_comparison_results
https://github.com/rutgers-apl/TaskProf2/tree/master/pldi_comparison_results

	Abstract
	1 Introduction
	2 Background on the DPST
	3 High Level Overview
	4 Profiling with What-If Analyses
	4.1 Computing Parallelism and Tasking Overhead
	4.2 On-the-Fly Parallelism Profile
	4.3 Identifying Regions with What-If Analyses

	5 Differential Performance Analysis
	6 Experimental Evaluation
	6.1 Prototype and Methodology
	6.2 Effectiveness in Identifying Bottlenecks
	6.3 Improving the Speedup of Applications
	6.4 Evaluation with Other Profilers

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

